【Python绘图】如何绘制交叉验证的AUC和AUPR曲线

本文介绍了如何在Python中使用sklearn库进行交叉验证下的AUROC和AUPR曲线绘制,通过线性插值法计算平均值,以及两种观点对AUPR计算方法的讨论。

1 交叉验证

  在进行模型性能评估的时候,避免不了进行交叉验证实验。但,想要使用AUROC和AUPR曲线绘制交叉验证的平均结果,是一个麻烦的问题。一般来说,绘制一次实验结果的AUROC和AUPR曲线没有什么难度,而交叉验证的曲线结果则需要取曲线的平均结果。值得注意的是,skit-learn的官方给了一个绘制交叉验证AUROC曲线的例子,采用的绘制方法为线性插值法。
  具体的思想是用np.interp(具体用法)拟合每次结果的AUROC曲线,然后将每次拟合的曲线结果取平均进行绘图。下面是官方给出的demo:

2 P y t h o n \rm{}Python Python绘制交叉验证 A U R O C \rm{}AUROC AUROC

  具体见参考文献[1]

import numpy as np
import matplotlib.pyplot as plt

from sklearn import svm, datasets
from sklearn.metrics import auc
from sklearn.metrics import RocCurveDisplay
from sklearn.model_selection import StratifiedKFold

# #############################################################################
# Data IO and generation

# Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
X, y = X[y != 2], y[y != 2]
n_samples, n_features = X.shape

# Add noisy features
random_state = np.random.RandomState(0)
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# #############################################################################
# Classification and ROC analysis

# Run classifier with cross-validation and plot ROC curves
cv = StratifiedKFold(n_splits
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值