原题传送门
APIO的题目不难啊
首先,家和办公室在河同侧的直接走吧
需要过河的拿出来算
k=1情况
一座桥的话,桥肯定要建在中间(没毛病)
然后家的位置和办公室的位置的话,因为在两岸,可以令起点的位置是较小的那个,便于计算
然后设桥的位置为a,家和桥的位置都为
x
i
x_i
xi,距离和就是
a
b
s
(
x
i
−
a
)
abs(x_i-a)
abs(xi−a)
a取
x
i
x_i
xi的中位数就行啦
k=2情况
枚举“断点”
断点左边的走左边的桥,断点右边的走右边的桥
得先想一下那些路径是走左边桥的
发现一条路径走的桥跟
(
x
+
y
)
/
2
(x+y)/2
(x+y)/2有关,所以按照这个先排个序
分别求两边的中位数,以及那个
s
i
g
m
a
(
a
b
s
(
x
i
−
a
)
)
sigma(abs(x_i-a))
sigma(abs(xi−a))
求中位数需要动态,这里权值线段树、对顶set、Splay皆可
不过我用了懒人fhq
Code:
#include <bits/stdc++.h>
#define maxn 1000010
#define LL long long
using namespace std;
int k, n, tot;
LL sum1, sum2, sum[maxn], ans[maxn];
int rt, sz, val[maxn], size[maxn], key[maxn], son[maxn][2];
struct node{
int x, y, z;
}a[maxn];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
bool cmp(node x, node y){ return x.z < y.z; }
int addnode(int x){
++sz;
val[sz] = sum[sz] = x, key[sz] = rand() * rand(), size[sz] = 1;
return sz;
}
void pushup(int x){
if (x){
size[x] = 1, sum[x] = val[x];
if (son[x][0]) size[x] += size[son[x][0]], sum[x] += sum[son[x][0]];
if (son[x][1]) size[x] += size[son[x][1]], sum[x] += sum[son[x][1]];
}
}
void split(int now, int w, int &u, int &v){
if (!now) u = v = 0; else{
if (val[now] <= w) u = now, split(son[now][1], w, son[u][1], v); else
v = now, split(son[now][0], w, u, son[v][0]);
pushup(now);
}
}
int merge(int u, int v){
if (!u || !v) return u + v;
if (key[u] >= key[v]){
son[u][1] = merge(son[u][1], v);
pushup(u);
return u;
} else{
son[v][0] = merge(u, son[v][0]);
pushup(v);
return v;
}
}
int kth(int now, int k){
while (1){
if (size[son[now][0]] >= k) now = son[now][0]; else
if (size[son[now][0]] + 1 >= k) return now; else
k -= size[son[now][0]] + 1, now = son[now][1];
}
}
void insert(int w){
int x, y;
split(rt, w, x, y);
rt = merge(merge(x, addnode(w)), y);
}
LL calc(){
LL w = val[kth(rt, size[rt] >> 1)];
int x, y;
split(rt, w, x, y);
LL Sum = w * size[x] - sum[x] + sum[y] - w * size[y];
rt = merge(x, y);
return Sum;
}
int main(){
srand(time(0));
k = read(), n = read();
for (int i = 1; i <= n; ++i){
char c1 = getchar();
for (; c1 != 'A' && c1 != 'B'; c1 = getchar());
int x = read();
char c2 = getchar();
for (; c2 != 'A' && c2 != 'B'; c2 = getchar());
int y = read();
if (x > y) swap(x, y);
if (c1 == c2) sum1 += y - x; else
a[++tot] = ((node) {x, y, x + y});
}
sort(a + 1, a + 1 + tot, cmp);
for (int i = 1; i <= tot; ++i){
insert(a[i].x); insert(a[i].y);
ans[i] = calc();
}
if (k == 1) printf("%lld\n", sum1 + tot + ans[tot]); else{
sum2 = ans[tot];
for (int i = 1; i <= sz; ++i) son[i][0] = son[i][1] = 0;
rt = sz = 0;
for (int i = tot; i; --i){
insert(a[i].x); insert(a[i].y);
sum2 = min(sum2, ans[i - 1] + calc());
}
printf("%lld\n", sum1 + tot + sum2);
}
return 0;
}

本文深入解析了APIO竞赛中的一道题目,详细介绍了当k等于1和2时,如何通过计算家中和办公室间最短路径来优化过河策略。利用中位数、动态线段树等算法解决家和办公室位于河两岸的问题。
3131

被折叠的 条评论
为什么被折叠?



