原题传送门
转化题意:
选一段长度为k的连续区间,使得区间内每个数减去中位数的差的绝对值之和最小
当然是枚举区间啦,然后
O
(
l
o
g
n
)
O(logn)
O(logn)求出当前区间每个数减去中位数的差的绝对值之和
工具?fhq Treap! pushup里面加维护一个sum就好啦
Code:
#include <bits/stdc++.h>
#define maxn 100010
#define LL long long
using namespace std;
int rt, sz, n, k, val[maxn], key[maxn], size[maxn], son[maxn][2], a[maxn];
LL sum[maxn];
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
int addnode(int x){
++sz;
val[sz] = sum[sz] = x, key[sz] = rand() * rand(), size[sz] = 1;
return sz;
}
void pushup(int x){
if (x){
size[x] = 1, sum[x] = val[x];
if (son[x][0]) size[x] += size[son[x][0]], sum[x] += sum[son[x][0]];
if (son[x][1]) size[x] += size[son[x][1]], sum[x] += sum[son[x][1]];
}
}
void split(int now, int w, int &u, int &v){
if (!now) u = v = 0; else{
if (val[now] <= w) u = now, split(son[now][1], w, son[u][1], v); else
v = now, split(son[now][0], w, u, son[v][0]);
pushup(now);
}
}
int merge(int u, int v){
if (!u || !v) return u + v;
if (key[u] >= key[v]){
son[u][1] = merge(son[u][1], v);
pushup(u);
return u;
} else{
son[v][0] = merge(u, son[v][0]);
pushup(v);
return v;
}
}
int kth(int now, int k){
while (1){
if (size[son[now][0]] >= k) now = son[now][0]; else
if (size[son[now][0]] + 1 >= k) return now; else
k -= size[son[now][0]] + 1, now = son[now][1];
}
}
void insert(int w){
int x, y, z;
split(rt, w, x, y);
rt = merge(merge(x, addnode(w)), y);
}
void del(int w){
int x, y, z;
split(rt, w, x, y);
split(x, w - 1, x, z);
rt = merge(merge(x, merge(son[z][0], son[z][1])), y);
}
int main(){
srand(time(0));
n = read(), k = read();
for (int i = 1; i <= n; ++i) a[i] = read();
for (int i = 1; i < k; ++i) insert(a[i]);
LL ans = 1e12;
int ansl, ansr, ansmid;
for (int i = k; i <= n; ++i){
insert(a[i]);
LL w = val[kth(rt, (k + 1) >> 1)];
int x, y;
split(rt, w, x, y);
LL Sum = w * size[x] - sum[x] + sum[y] - w * size[y];
rt = merge(x, y);
if (Sum < ans){
ans = Sum, ansl = i - k + 1, ansr = i, ansmid = w;
}
del(a[i - k + 1]);
}
printf("%lld\n", ans);
for (int i = ansl; i <= ansr; ++i) a[i] = ansmid;
for (int i = 1; i <= n; ++i) printf("%d\n", a[i]);
return 0;
}

本文介绍了一种使用FHQ Treap数据结构解决寻找最优区间中位数的问题,通过枚举区间并利用Treap快速计算区间内各数值与中位数差的绝对值之和,实现O(n log n)的高效算法。
3131

被折叠的 条评论
为什么被折叠?



