原题传送门
去年觉得是道难题,现在觉得这着实是道大水题
题意:一棵树,给出几条路径(从点x到点y),可以使一条边长度变为0,使得路径长度最大值最小
思路:
- 最大值最小,说明用二分
- 如何check,首先把长度大于mid的路径找出来
- 在找出来的路径都经过的一些边中找出长度最长的那条边
- 如果路径长度最大值-找出的边的长度<=mid,返回true(因为,这样使这条边长度变为0,可以让路径长度最大值<=mid)
就搞定了
接着想如何实现
- 预处理:找出每条路径的lca,并求出每条路径长度。(方法倍增,tarjan,树剖等皆可,这里用了树剖)
- 二分
- check部分:
- 找出长度大于mid的路径
- 因为要找这些路径都经过的边,使用树上差分
- dfs遍历找出这些路径都经过的边,并且找到边长度最大值
- 判断是否符合要求
总结:NOIp的题目还是很可以的,算法、思维难度不高,应用性还是比较强的
用到了许多小算法:lca,二分,树上差分
Code:
#include <bits/stdc++.h>
#define maxn 300010
using namespace std;
struct Edge{
int to, len, next;
}edge[maxn << 1];
struct Line{
int x, y, lca, len;
}line[maxn];
int num, size[maxn], cnt, son[maxn], fa[maxn], d[maxn], head[maxn], len[maxn], top[maxn], power[maxn];
int sum, maxlen, n, m;
inline int read(){
int s = 0, w = 1;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') w = -1;
for (; isdigit(c); c = getchar()) s = (s << 1) + (s << 3) + (c ^ 48);
return s * w;
}
void addedge(int x, int y, int z){ edge[++num].to = y, edge[num].len = z, edge[num].next = head[x], head[x] = num; }
void dfs(int u){
size[u] = 1, son[u] = -1;
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != fa[u]){
fa[v] = u, d[v] = d[u] + 1, len[v] = len[u] + edge[i].len;
dfs(v);
size[u] += size[v];
if (son[u] == -1 || size[son[u]] < size[v]) son[u] = v;
}
}
}
void dfs(int u, int x){
top[u] = x;
if (son[u] == -1) return;
dfs(son[u], x);
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != fa[u] && v != son[u]) dfs(v, v);
}
}
int lca(int u, int v){
while (top[u] != top[v]){
if (d[top[u]] < d[top[v]]) swap(u, v);
u = fa[top[u]];
}
if (d[u] < d[v]) swap(u, v);
return v;
}
void dfs1(int u, int l){
for (int i = head[u]; i; i = edge[i].next){
int v = edge[i].to;
if (v != fa[u]){
dfs1(v, edge[i].len);
power[u] += power[v];
}
}
if (power[u] == cnt) sum = max(sum, l);
}
bool check(int mid){
memset(power, 0, sizeof(power));
cnt = sum = 0;
for (int i = 1; i <= m; ++i)
if (line[i].len > mid) ++cnt, ++power[line[i].x], ++power[line[i].y], power[line[i].lca] -= 2;
dfs1(1, 0);
return (maxlen - sum <= mid);
}
int main(){
n = read(), m = read();
for (int i = 1; i < n; ++i){
int x = read(), y = read(), z = read();
addedge(x, y, z); addedge(y, x, z);
}
dfs(1); dfs(1, 0);
for (int i = 1; i <= m; ++i){
line[i].x = read(), line[i].y = read();
line[i].lca = lca(line[i].x, line[i].y);
line[i].len = len[line[i].x] + len[line[i].y] - (len[line[i].lca] << 1);
maxlen = max(maxlen, line[i].len);
}
int l = 0, r = maxlen, ans = 0;
while (l <= r){
int mid = (l + r) >> 1;
if (check(mid)) ans = mid, r = mid - 1; else l = mid + 1;
}
printf("%d\n", ans);
return 0;
}

本文解析了一道NOIp竞赛题,通过树上二分和LCA算法寻找最优路径,以使路径长度最大值最小。介绍了算法思路、实现方法及代码细节。
726

被折叠的 条评论
为什么被折叠?



