习题(二)承自定积分框架,主要涉及积分不等式的运用。
1. 设 f(x)f(x)f(x) 在 [a,b][a,b][a,b] 上非负可积,且 ∫abf(x)dx=1\displaystyle \int_a^b f(x)dx=1∫abf(x)dx=1,求证
(∫abf(x)coskxdx)2+(∫abf(x)sinkxdx)2≤1
\left(\int_a^bf(x)\cos kx dx\right)^2+\left(\int_a^bf(x)\sin kx dx\right)^2\le 1
(∫abf(x)coskxdx)2+(∫abf(x)sinkxdx)2≤1
证明
由柯西不等式的积分推广得
(∫abf(x)coskxdx)2=(∫abf(x)f(x)coskxdx)2≤(∫abf(x)dx=1)(∫abf(x)cos2kxdx)=∫abf(x)cos2kxdx
\begin{aligned}
\left(\int_a^bf(x)\cos kx dx\right)^2&=\left(\int_a^b\sqrt{f(x)}\sqrt{f(x)}\cos kx dx\right)^2\\
&\le\left(\int_a^b f(x)dx=1\right)\left(\int_a^bf(x)\cos^2 kx dx\right)\\
&=\int_a^bf(x)\cos^2 kx dx
\end{aligned}
(∫abf(x)coskxdx)2=(∫abf(x)f(x)coskxdx)2≤(∫abf(x)dx=1)(∫abf(x)cos2kxdx)=∫abf(x)cos2kxdx
对于 sin\sinsin 也有相应的不等式,将两个不等式求和即可证明。
2. 设 f(x)f(x)f(x) 在 [0,1][0,1][0,1] 上连续可微,f(0)=f(1)=0f(0)=f(1)=0f(0)=f(1)=0,求证
(∫01xf(x)dx)2≤145∫01(f′(x))2dx
\left(\int_0^1xf(x)dx\right)^2\le \frac{1}{45}\int_0^1(f'(x))^2dx
(∫01xf(x)dx)2≤451∫01(f′(x))2dx
证明
∫01xf(x)dx=x2f(x)∣01−12∫01x2f′(x)=−12∫01x2f′(x)
\begin{aligned}
\int_0^1xf(x)dx&=\left.\frac{x}{2}f(x)\right|_0^1-\frac{1}{2}\int_0^1x^2f'(x)\\
&=-\frac{1}{2}\int_0^1x^2f'(x)
\end{aligned}
∫01xf(x)dx=2xf(x)∣∣∣01−21∫01x2f′(x)=−21∫01x2f′(x)
任取实数 a,ba,ba,b 且 b>0b>0b>0,则有
2b∫01xf(x)dx=∫01(a−bx2)f′(x)dx
2b\int_0^1xf(x)dx=\int_0^1(a-bx^2)f'(x)dx
2b∫01xf(x)dx=∫01(a−bx2)f′(x)dx
使用柯西施瓦兹不等式得
4b2(∫01xf(x)dx)2≤∫01(a−bx2)2dx∫01(f′(x))2dx=115(15a2−10ab+3b2)∫01(f′(x))2dx
\begin{aligned}
4b^2\left(\int_0^1xf(x)dx\right)^2&\le\int_0^1(a-bx^2)^2dx\int_0^1(f'(x))^2dx\\
&=\frac{1}{15}(15a^2-10ab+3b^2)\int_0^1(f'(x))^2dx
\end{aligned}
4b2(∫01xf(x)dx)2≤∫01(a−bx2)2dx∫01(f′(x))2dx=151(15a2−10ab+3b2)∫01(f′(x))2dx
令 c=ab\displaystyle c = \frac{a}{b}c=ba,整理后得到
(∫01xf(x)dx)2≤160(15c2−10c+3)∫01(f′(x))2dx
\left(\int_0^1xf(x)dx\right)^2\le\frac{1}{60}(15c^2-10c+3)\int_0^1(f'(x))^2dx
(∫01xf(x)dx)2≤601(15c2−10c+3)∫01(f′(x))2dx
上面的不等式对任意实数 ccc 都满足,而 min{15c2−10c+3∣c∈R}=43\displaystyle \min\{15c^2-10c+3|c\in\mathbb{R}\}=\frac{4}{3}min{15c2−10c+3∣c∈R}=34,故原不等式成立。
证毕。
3. 设 f(x)f(x)f(x) 连续可微,且 f(0)=f(1)=0f(0)=f(1)=0f(0)=f(1)=0求证
(1) f2(x)≤14∫01f′(x)2dx\displaystyle (1)\ f^2(x)\le\frac{1}{4}\int_0^1f'(x)^2dx(1) f2(x)≤41∫01f′(x)2dx
(2) ∫01f2(x)dx≤14∫01f′(x)2dx\displaystyle (2)\ \int_0^1f^2(x)dx\le\frac{1}{4}\int_0^1f'(x)^2dx(2) ∫01f2(x)dx≤41∫01f′(x)2dx
证明
(1)(1)(1)
应用柯西施瓦兹不等式得
f2(x)=(∫0xf′(t)dt)2≤∫0x12dt∫0xf′(t)2dt=x∫0xf′(t)2dt
f^2(x)=\left(\int_0^xf'(t)dt\right)^2\le\int_0^x1^2dt\int_0^xf'(t)^2dt= x\int_0^xf'(t)^2dt
f2(x)=(∫0xf′(t)dt)2≤∫0x12dt∫0xf′(t)2dt=x∫0xf′(t)2dt
以及
f2(x)=(∫1xf′(t)dt)2≤(1−x)∫x1f′(t)2dt
f^2(x)=\left(\int_1^xf'(t)dt\right)^2 \le (1-x)\int_x^1f'(t)^2dt
f2(x)=(∫1xf′(t)dt)2≤(1−x)∫x1f′(t)2dt
第一个不等式的右端在 [0,1][0,1][0,1] 上单增,第二个不等式的右端在 [0,1][0,1][0,1] 上单减,且当 x=12x=\frac{1}{2}x=21 时两个右端均相等,于是
f2(x)≤12∫012f′(t)2dt f^2(x)\le \frac{1}{2}\int_0^{1\over 2}f'(t)^2dt f2(x)≤21∫021f′(t)2dt
f2(x)≤12∫121f′(t)2dt f^2(x)\le \frac{1}{2}\int_{1\over 2}^1f'(t)^2dt f2(x)≤21∫211f′(t)2dt
(2)(2)(2)
f2(x)≤x∫01f′(t)2dt
f^2(x)\le x\int_0^1f'(t)^2dt
f2(x)≤x∫01f′(t)2dt
f2(x)≤(1−x)∫01f′(t)2dt f^2(x)\le (1-x)\int_0^1f'(t)^2dt f2(x)≤(1−x)∫01f′(t)2dt
注意到当 x∈[0,0.5]x\in[0,0.5]x∈[0,0.5] 时 x≤1−xx\le 1-xx≤1−x,当 x∈[0.5,1]x\in[0.5,1]x∈[0.5,1] 时 1−x≤x1-x\le x1−x≤x。
所以对 ∫01f2(x)\displaystyle\int_0^1f^2(x)∫01f2(x) 进行分段估计。
∫01f2(x)dx=∫012f2(x)dx+∫121f2(x)dx≤(∫012xdx+∫121(1−x)dx)∫01f′(x)2dx=14∫01f′(x)2dx
\begin{aligned}
\int_0^1f^2(x)dx&=\int_0^{1\over 2}f^2(x)dx+\int_{1\over 2}^1f^2(x)dx\\
&\le\left(\int_0^{1\over2}xdx+\int_{1\over2}^1(1-x)dx\right)\int_0^1f'(x)^2dx\\
&=\frac{1}{4}\int_0^1f'(x)^2dx
\end{aligned}
∫01f2(x)dx=∫021f2(x)dx+∫211f2(x)dx≤(∫021xdx+∫211(1−x)dx)∫01f′(x)2dx=41∫01f′(x)2dx