http://acm.hdu.edu.cn/showproblem.php?pid=5749
题意:给你一个n*m的矩形然后求
W=(∑a=1n∑b=1ma⋅b⋅S(a,b)) mod 232
,S(a,b)表示所有大小是a*b的子矩阵的鞍点的值的和。
题解:鞍点是在行里唯一最小,列里唯一最大,所以先单调栈一下,有点麻烦,细心点写就行,然后就是求这个点的贡献,等于就是这个点在一个矩形里,求这个矩形里,其他所有包含这个点的子矩形的面积和。
有两种方法,第一种是容斥,就是算在长a宽b的矩形里,所有子矩形的面积,然后减去边上不包含这个点的四块里的所有子矩形的面积,最后加上4个角上的。
长a宽b的矩形里所有子矩形的面积是
长为1的所有矩形面积:
a×1×(b×1+(b−1)×2+⋯+1×b)
后面括号里的求和是
∑i=1b(b+1−i)×i
展开得到
∑i=1b(b+1)i−i×i
求和就是
b(b+1)(b+2)6
所以长a宽b的矩形里面所有子矩形的面积就是
ab(a+1)(b+1)(a+2)(b+2)36
这是第一种容斥的方法。
第二种直接算的方法就是假设这个点在矩形里,距离上左下右的距离分别 是a,b,c,d,公式就是
∑i=0a∑j=0b∑k=0c∑h=0d(i+k+1)∗(j+h+1)
然后直接推导就得
(a+1)(c+1)(a+c+2)2∗(b+1)(d+1)(b+d+2)2
方法1:
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 1005
#define MAXN 1000005
#define maxnode 15
#define sigma_size 30
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-4;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
int a[MAX][MAX];
int st[MAX];
int l[MAX][MAX],r[MAX][MAX],up[MAX][MAX],down[MAX][MAX];
unsigned rong(unsigned a,unsigned b){
return (b*(b+1)*(b+2)/6)*(a*(a+1)*(a+2)/6);
}
int main(){
//freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
l[i][j]=1;
r[i][j]=m;
up[i][j]=1;
down[i][j]=n;
}
}
for(int i=1;i<=n;i++){
int top=0;
st[++top]=0;
for(int j=1;j<=m;j++){
while(top>1&&a[i][st[top]]>a[i][j]){
r[i][st[top]]=min(j-1,r[i][st[top]]);
top--;
}
if(top>1&&a[i][st[top]]==a[i][j]) l[i][j]=max(l[i][j],st[top]+1);
while(top>1&&a[i][st[top]]==a[i][j]){
r[i][st[top]]=min(j-1,r[i][st[top]]);
top--;
}
l[i][j]=max(l[i][j],st[top]+1);
st[++top]=j;
}
}
for(int j=1;j<=m;j++){
int top=0;
st[++top]=0;
for(int i=1;i<=n;i++){
while(top>1&&a[st[top]][j]<a[i][j]){
down[st[top]][j]=min(down[st[top]][j],i-1);
top--;
}
if(top>1&&a[st[top]][j]==a[i][j]) up[i][j]=max(up[i][j],st[top]+1);
while(top>1&&a[st[top]][j]==a[i][j]){
down[st[top]][j]=min(down[st[top]][j],i-1);
top--;
}
up[i][j]=max(up[i][j],st[top]+1);
st[++top]=i;
}
}
unsigned ans=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
unsigned ret=rong(r[i][j]-l[i][j]+1,down[i][j]-up[i][j]+1);
ret-=rong(r[i][j]-j,down[i][j]-up[i][j]+1);
ret-=rong(j-l[i][j],down[i][j]-up[i][j]+1);
ret-=rong(r[i][j]-l[i][j]+1,i-up[i][j]);
ret-=rong(r[i][j]-l[i][j]+1,down[i][j]-i);
ret+=rong(r[i][j]-j,i-up[i][j]);
ret+=rong(r[i][j]-j,down[i][j]-i);
ret+=rong(j-l[i][j],i-up[i][j]);
ret+=rong(j-l[i][j],down[i][j]-i);
unsigned tmp=a[i][j];
ans+=ret*tmp;
}
}
cout<<ans<<endl;
}
return 0;
}
方法2:
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <string>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <sstream>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
#define MAX 1005
#define MAXN 1000005
#define maxnode 15
#define sigma_size 30
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define lrt rt<<1
#define rrt rt<<1|1
#define middle int m=(r+l)>>1
#define LL long long
#define ull unsigned long long
#define mem(x,v) memset(x,v,sizeof(x))
#define lowbit(x) (x&-x)
#define pii pair<int,int>
#define bits(a) __builtin_popcount(a)
#define mk make_pair
#define limit 10000
//const int prime = 999983;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f;
const double pi = acos(-1.0);
const double inf = 1e18;
const double eps = 1e-4;
const LL mod = 1e9+7;
const ull mx = 133333331;
/*****************************************************/
inline void RI(int &x) {
char c;
while((c=getchar())<'0' || c>'9');
x=c-'0';
while((c=getchar())>='0' && c<='9') x=(x<<3)+(x<<1)+c-'0';
}
/*****************************************************/
int a[MAX][MAX];
int st[MAX];
int l[MAX][MAX],r[MAX][MAX],up[MAX][MAX],down[MAX][MAX];
unsigned cal(unsigned a,unsigned b,unsigned c,unsigned d){
return ((a+1)*(c+1)*(a+c+2)/2)*((b+1)*(d+1)*(b+d+2)/2);
}
int main(){
//freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--){
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
scanf("%d",&a[i][j]);
l[i][j]=1;
r[i][j]=m;
up[i][j]=1;
down[i][j]=n;
}
}
for(int i=1;i<=n;i++){
int top=0;
st[++top]=0;
for(int j=1;j<=m;j++){
while(top>1&&a[i][st[top]]>a[i][j]){
r[i][st[top]]=min(j-1,r[i][st[top]]);
top--;
}
if(top>1&&a[i][st[top]]==a[i][j]) l[i][j]=max(l[i][j],st[top]+1);
while(top>1&&a[i][st[top]]==a[i][j]){
r[i][st[top]]=min(j-1,r[i][st[top]]);
top--;
}
l[i][j]=max(l[i][j],st[top]+1);
st[++top]=j;
}
}
for(int j=1;j<=m;j++){
int top=0;
st[++top]=0;
for(int i=1;i<=n;i++){
while(top>1&&a[st[top]][j]<a[i][j]){
down[st[top]][j]=min(down[st[top]][j],i-1);
top--;
}
if(top>1&&a[st[top]][j]==a[i][j]) up[i][j]=max(up[i][j],st[top]+1);
while(top>1&&a[st[top]][j]==a[i][j]){
down[st[top]][j]=min(down[st[top]][j],i-1);
top--;
}
up[i][j]=max(up[i][j],st[top]+1);
st[++top]=i;
}
}
unsigned ans=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
unsigned x=i-up[i][j];
unsigned y=j-l[i][j];
unsigned z=down[i][j]-i;
unsigned w=r[i][j]-j;
unsigned tmp=a[i][j];
ans+=cal(x,y,z,w)*tmp;
}
}
cout<<ans<<endl;
}
return 0;
}
本文介绍了一道算法题目,需要求解一个n*m矩阵中所有鞍点的值的和,并通过两种不同的方法实现了该算法。第一种方法利用了容斥原理进行计算,第二种方法则是直接计算每个鞍点的贡献。
7万+

被折叠的 条评论
为什么被折叠?



