单调栈+RMQ
贴上单调栈介绍:
https://blog.youkuaiyun.com/qq_43333395/article/details/89426429
贴上RMQ介绍:
https://blog.youkuaiyun.com/qq_43333395/article/details/89442824
例题一 区间的价值
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5696
题意
给出一个长度为n(1 <= n <= 100000)的序列,区间权值为区间最大值乘以区间最小值,输出长度为1到n的区间的最大权值。
题解
先利用单调栈算出以a[i]为最小值的最大区间延伸,设该区间宽度为L,则更新ans[L](这里用到st表查询该区间最大值),最后从宽度较大的区间刷新宽度较小的区间的长度,即为答案。
为什么是对的,可以证明一下,从结果考虑,宽度为k的区间的最优值一定可以被这种方式取到。
ac代码:
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long lint;
#define maxn (100010)
#define left lleft
#define right rright
#define log2 Log2
int a[maxn], left[maxn], right[maxn];
lint ans[maxn];
int log2[maxn], st[maxn][32];
void st_prepare(int arr[], int n)
{
log2[1] = 0;
for(int i = 2; i <= n; i++)
{
log2[i] = log2[i-1];
if((1 << log2[i] + 1) == i)
log2[i]++;
}
for(int i = n-1; i >= 0; i--)
{
st[i][0] = arr[i];
for(int j = 1; i + (1 << j) - 1 < n; j++)
{
st[i][j] = max(st[i][j-1], st[i+(1<<j-1)][j-1]);
}
}
}
int st_query(int l, int r)
{
int len = log2[r - l + 1];
return max(st[l][len], st[r - (1 << len) + 1][len]);
}
#define stack Stack
pair<int, int> stack[maxn];
int top;
void push_stack(int id, int w, int val[], int mx)
{
while(top > 0)
{
if(stack[top].first < w)
break;
top--;
}
if(!top) val[id] = mx;
else val[id] = stack[top].second;
stack[++top] = make_pair(w, id);
}
int main()
{
int n;
while(cin >> n)
{
for(int i = 1; i <= n; i++)
scanf("%d", &a[i]);
st_prepare(a + 1, n);
top = 0;
for(int i = 1; i <= n; i++)
{
push_stack(i, a[i], left, 0);
}
top = 0;
for(int i = n; i >= 1; i--)
{
push_stack(i, a[i], right, n + 1);
}
for(int i = 0; i <= n; i++) ans[i] = -1;
for(int i = 1, l, r, k; i <= n; i++)
{
l = left[i];
r = right[i] - 2;
k = st_query(l, r);
ans[r - l + 1] = max(ans[r - l + 1], (lint)k * a[i]);
}
for(int i