PAT (Advanced Level) Practice 1002 A+B for Polynomials

本文介绍了一道关于多项式加法的PAT高级题目,涉及输入两个多项式,计算它们的和,并以与输入相同格式输出。通过实例和代码实现,探讨了如何高效处理多项式系数和指数的计算。

PAT (Advanced Level) Practice 1002 A+B for Polynomials


Topic Description:

This time, you are supposed to find A+B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:
KN1aN1N2aN2 ... NKaNkK N_1 a_{N_1} N_2 a_{N_2} \ ... \ N_K a_{N_k}KN1aN1N2aN2 ... NKaNk
where KKK is the number of nonzero terms in the polynomial, NiN_iNi and aNi(i=1,2,⋯,K)a_{N_i}(i=1,2,⋯,K)aNi(i=1,2,,K) are the exponents and coefficients, respectively. It is given that 1≤K≤10,0≤NK<⋯<N2<N1≤1000.1≤K≤10,0≤N_K <⋯<N_2<N_1≤1000.1K100NK<<N2<N11000.

Output Specification:

For each test case you should output the sum of AAA and BBB in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Test:

Sample Input1:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output1:

3 2 1.5 1 2.9 0 3.2

Simple analysis:

  • None

My codes:

#include <iostream>

using namespace std;

const int N = 1010;

float c[N];

int main() {
	int k;
	int ex;
	float co;
	scanf("%d", &k);
	for (int i = 0; i < k; i ++){
		scanf("%d%f", &ex, &co);
		c[ex] += co;
	}
	scanf("%d", &k);
	for (int i = 0; i < k; i++) {
		scanf("%d%f", &ex, &co);
		c[ex] += co;
	}
	
	int cnt = 0;
	for (int i = 0; i < N; i++) {
		if (c[i] != 0) cnt++;
	}
	printf("%d", cnt);
	for (int i = N; i >= 0; i--) {
		if (c[i] != 0.0)
			printf(" %d %.1f", i, c[i]);
	}
	
	return 0;
}
1002 A+B for Polynomials 是一道编程题目,通常是在考察Java中处理多项式加法的问题。在这个问题中,你需要编写一个程序,让用户输入两个多项式的系数(如a_n*x^n + a_{n-1}*x^{n-1} + ... + a_1*x + a_0的形式),然后计算它们的和,并按照同样的形式表示出来。 在Java中,你可以创建一个`Polynomial`类,包含一个数组来存储系数和最高次数的信息。用户输入的每个多项式可以被解析成这样的结构,然后通过遍历并累加系数来完成加法操作。最后,将结果转换回字符串形式展示给用户。 以下是简化版的代码示例: ```java class Polynomial { int[] coefficients; int degree; // 构造函数,初始化数组 public Polynomial(int[] coeffs) { coefficients = coeffs; degree = coefficients.length - 1; } // 加法方法 Polynomial add(Polynomial other) { Polynomial result = new Polynomial(new int[coefficients.length + other.coefficients.length]); for (int i = 0; i < coefficients.length; ++i) { result.coefficients[i] += coefficients[i]; } for (int i = 0; i < other.coefficients.length; ++i) { result.coefficients[i + coefficients.length] += other.coefficients[i]; } result.degree = Math.max(degree, other.degree); return result; } @Override public String toString() { StringBuilder sb = new StringBuilder(); if (degree >= 0) { for (int i = degree; i >= 0; --i) { sb.append(coefficients[i]).append('*x^').append(i).append(" + "); } // 移除最后一个 " + " sb.setLength(sb.length() - 2); } else { sb.append("0"); } return sb.toString(); } } // 主函数示例 public static void main(String[] args) { Polynomial poly1 = new Polynomial(...); // 用户输入第一个多项式的系数 Polynomial poly2 = new Polynomial(...); // 用户输入第二个多项式的系数 Polynomial sum = poly1.add(poly2); System.out.println("Result: " + sum); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值