【BZOJ4475】子集选取(JSOI2015)-组合数学

博客围绕子集选取问题展开,指出需运用组合数学知识。通过分开考虑每个元素,利用从直角三角形左下角引出折线的方式,推导出一个元素的方案数为2k,进而得出n个元素的总方案数为2nk,最后给出了代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

测试地址:子集选取
做法:本题需要用到组合数学。
本题是一个结论题,接下来写一下数学推导。
我们显然可以分开考虑每个元素,最后把方案数乘起来。对于一个元素,它在直角三角形中的存在是要满足一定限制条件的:考虑从直角三角形的左下角引出一条折线,可以向上或向右走,最后折线的左上方就是出现该元素的位置。那么折线的数目就是方案的数目,可以发现折线不管怎么走都是走 k k 步,而每一步都可以选择向右或向上,所以总的方案数为2k。因此 n n 个元素的情况的总方案数就是(2k)n=2nk,于是我们就解决了这一题。
以下是本人代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1000000007;
ll n,k;

ll power(ll a,ll b)
{
    ll s=1ll,ss=a;
    while(b)
    {
        if (b&1) s=s*ss%mod;
        ss=ss*ss%mod;b>>=1;
    }
    return s;
}

int main()
{
    scanf("%lld%lld",&n,&k);
    printf("%lld",power(2ll,n*k));

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值