✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码获取及仿真咨询内容私信。
🔥 内容介绍
本文针对多智能体协同路径规划的核心痛点,完善并优化了 “去中心化架构 + 改进 RRT 搜索 + 帕累托多目标优化” 方案,补充了冲突消解细化逻辑、动态协同机制及完整可视化模块。方案无需中心控制器,每个智能体独立决策并通过局部通信避碰,同时平衡 “路径最短、安全距离最大、能耗最低” 三大目标,适用于无人机集群、AGV 车间调度、机器人协同作业等场景,附可直接运行的完整代码与结果分析!
一、方案核心升级(相较于前序版本)
-
补全路径提取与冲突消解细节,修复 RRT 树回溯逻辑;
-
新增多智能体协同调度类,统一管理感知、规划、运动全流程;
-
强化时间维度冲突检测(避免 “时空重叠” 碰撞);
-
优化帕累托最优选择策略,支持场景化权重配置;
-
完善动态可视化模块,生成智能体运动动画与指标分析图表;
-
补充路径验证与约束检查,确保运动可行性(速度 / 角速度限制)。
⛳️ 运行结果




📣 部分代码
%%10A-different-goals-with-obs
x1=[0.8585386889249812, 0.8740971206361074, 0.8896351424099516, 0.9051528125698476, 0.9206501894391306, 0.9361273313411346, 0.9515842965991937, 0.9670211435366418, 0.9824379304768139, 0.9978347157430442, 1.0132115576586667, 1.0285685145470158, 1.0439056447314248, 1.0592230065352293, 1.0745206582817632, 1.0897986582943608, 1.105057064896356, 1.1202959364110834, 1.1355153311618773, 1.1507153074720722, 1.1658959236650013, 1.181057238064, 1.1961993089924021, 1.2113221947735424, 1.2264259537307542, 1.2415106441873722, 1.2565763244667307, 1.2716230528921648, 1.2866508877870073, 1.3016598874745928, 1.3166501102782566, 1.3316216145213324, 1.3465744585271546, 1.3615087006190567, 1.376424399120373, 1.3913216123544392, 1.4062003986445888, 1.4210608163141556, 1.4359029236864733, 1.4507267790848783, 1.4655324408327035, 1.4803199672532834, 1.4950894166699518, 1.5098408474060427, 1.5245743177848923, 1.5392898861298332, 1.5539876107642, 1.5686675500113263, 1.583329762194548, 1.5979743056371987, 1.612601238662612, 1.6272106195941225, 1.6418025067550643, 1.6563769584687729, 1.6709340330585813, 1.685473788847824, 1.6999962841598353, 1.7145015773179495, 1.728989726645501, 1.7434607904658246, 1.7579148271022524, 1.7723518948781216, 1.786772052116765, 1.8011753571415166, 1.815561868275711, 1.8299316438426825, 1.8442847421657658, 1.8586212215682945, 1.8729411403736032, 1.887244556905026, 1.901531529485897, 1.9158021164395513, 1.9300563760893226, 1.9442943667585446, 1.9585161467705523, 1.9727217744486805, 1.9869113081162622, 2.0010848060966318, 2.015242326713125, 2.0293839282890747, 2.0435096691478156, 2.0576196076126823, 2.0717138020070087, 2.085792310654128, 2.099855191877377, 2.1139025040000874, 2.127934305345595, 2.1419506542372337, 2.155951608998338, 2.169937227952242, 2.183907569422279, 2.1978626917317845, 2.2118026532040926, 2.2257275121625377, 2.239637326930454, 2.253532155831174, 2.2674120571880354, 2.2812770893243695, 2.295127310563512, 2.308962779228796, 2.322783553643558, 2.3365896921311298, 2.3503812530148473, 2.364158294618044, 2.377920875264054, 2.3916690532762126, 2.4054028869778534, 2.41912243469231, 2.4328277547429185, 2.446518905453011, 2.4601959451459225, 2.473858932144989, 2.4875079247735417, 2.5011429813549175, 2.5147641602124495, 2.5283715196694727, 2.54196511804932, 2.5555450136753266, 2.5691112648708274, 2.582663929959155, 2.596203067263645, 2.609728735107632, 2.623240991814448, 2.63673989570743, 2.650225505109911, 2.663697878345225, 2.6771570737367063, 2.6906031496076905, 2.7040361642815096, 2.7174561760815004, 2.7308632433309947, 2.744257424353329, 2.757638777471836, 2.7710073610098505, 2.7843632332907076, 2.79770645263774, 2.8110370773742828, 2.8243551658236705, 2.8376607763092374, 2.8509539671543163, 2.8642347966822435, 2.877503323216352, 2.8907596050799764, 2.9040037005964514, 2.9172356680891114, 2.9304555658812883, 2.9436634522963208, 2.9568593856575394, 2.9700434242882787, 2.9832156265118743, 2.9963760506516603, 3.0095247550309714, 3.0226617979731407, 3.035787237801503, 3.0489011328393913, 3.0620035414101423, 3.0750945218370895, 3.088174132443566, 3.1012424315529064, 3.114299477488445, 3.127345328573518, 3.1403800431314575, 3.153403679485598, 3.1664162959592748, 3.1794179508758202, 3.1924087025585717, 3.20538860933086, 3.218357729516022, 3.2313161214373913, 3.2442638434183007, 3.257200953782087, 3.270127510852082, 3.283043572951621, 3.2959491984040388, 3.308844445532669, 3.3217293726608466, 3.334604038111905, 3.347468500209178, 3.360322817276003, 3.373167047635711, 3.386001249611636, 3.398825481527114, 3.4116398017054794, 3.424444268470066, 3.437238940144207, 3.450023875051238, 3.462799131514494, 3.475564767857307, 3.4883208424030125, 3.5010674134749453, 3.513804539396437, 3.5265322784908264, 3.5392506890814452, 3.551959829491626, 3.564659758044706, 3.5773505330640183, 3.590032212872898, 3.6027048557946757, 3.6153685201526904, 3.628023264270275, 3.6406691464707617, 3.6533062250774884, 3.665934558413786, 3.67855420480299, 3.6911652225684355, 3.703767670033456, 3.7163616055213846, 3.7289470873555572, 3.741524173859308, 3.7540929233559717, 3.7666533941688813, 3.77920564462137, 3.7917497330367746, 3.804285717738429, 3.816813657049667, 3.8293336092938217, 3.8418456327942287, 3.854349785874222, 3.8668461268571366, 3.8793347140663053, 3.8918156058250633, 3.9042888604567443, 3.9167545362846834, 3.9292126916322148, 3.9416633848226708, 3.9541066741793873, 3.9665426180257004, 3.9789712746849415, 3.991392702480446, 4.003806959735546, 4.016214104773581, 4.02861419591788, 4.0410072914917805, 4.053393449818615, 4.065772729221718, 4.078145188024425, 4.09051088455007, 4.102869877121985, 4.115222224063505, 4.1275679836979675, 4.139907214348704, 4.15223997433905, 4.1645663219923374, 4.1768863156319025, 4.18920001358108, 4.201507474163202, 4.2138087557016055, 4.226103916519622, 4.2383930149405895, 4.250676109287839, 4.262953257884705, 4.275224519054522, 4.287489951120624, 4.299749612406348, 4.312003561235026, 4.324251855929992, 4.336494554814581, 4.348731716212127, 4.360963398445966, 4.373189659839429, 4.385410558715852, 4.397626153398568, 4.409836502210914, 4.4220416634762225, 4.434241695517827, 4.446436656659064, 4.458626605223268, 4.47081159953377, 4.482991697913905, 4.495166958687011, 4.507337440176417, 4.51950320070546, 4.531664298597476, 4.543820792175795, 4.555972739763757, 4.56812019968469, 4.580263230261933, 4.592401889818818, 4.604536236678679, 4.616666329164853, 4.6287922256006695, 4.640913984309468, 4.6530316636145805, 4.66514532183934, 4.677255017307082, 4.689360808341141, 4.70146275326485, 4.7135609104015455, 4.72565533807456, 4.737746094607227, 4.749833238322884, 4.761916827544862, 4.773996920596497, 4.786073575801124, 4.798146851482075, 4.8102168059626855, 4.822283497566289, 4.8343469846162215, 4.846407325435815, 4.858464578348406, 4.870518801677326, 4.882570053745915, 4.894618392877499, 4.906663877395419, 4.918706565623005, 4.9307465158835955, 4.942783786500521, 4.954818435797119, 4.966850522096717, 4.978880103722657, 4.990907238998272, 5.002931986246894, 5.014954403791857, 5.026974549956497, 5.038992483064147, 5.051008261438142, 5.063021943401815, 5.0750335872785035, 5.087043251391537, 5.099050994064256, 5.111056873619989, 5.123060948382071, 5.13506327667384, 5.1470639168186265, 5.159062927139767, 5.171060365960596, 5.183056291604445, 5.195050762394651, 5.207043836654547, 5.219035572707467, 5.231026028876747, 5.243015263485719, 5.255003334857719, 5.266990301316081, 5.27897622118414, 5.290961152785226, 5.302945154442679, 5.31492828447983, 5.326910601220015, 5.338892162986567, 5.35087302810282, 5.362853254892108, 5.374832901677767, 5.38681202678313, 5.398790688531532, 5.410768945246308, 5.4227468552507885, 5.434724476868314, 5.4467018684222115, 5.4586790882358205, 5.4706561946324745, 5.4826332459355065, 5.494610300468251, 5.506587416554044, 5.518564652516216, 5.530542066678106, 5.542519717363046, 5.554497662894368, 5.56647596159541, 5.578454671789504, 5.590433851799985, 5.602413559950188, 5.614393854563445, 5.626374793963093, 5.638356436472465, 5.650338840414895, 5.662322064113719, 5.6743061658922676, 5.686291204073877, 5.698277236981884, 5.7102643229396195, 5.72225252027042, 5.734241887297618, 5.746232482344547, 5.758224363734547, 5.770217589790945, 5.782212218837078, 5.794208309196281, 5.806205919191889, 5.818205107147234, 5.83020593138565, 5.842208450230476, 5.854212722005041, 5.866218805032683, 5.878226757636732, 5.890236638140527, 5.902248504867398, 5.914262416140682, 5.926278430283712, 5.938296605619825, 5.95031700047235, 5.962339673164626, 5.974364682019988, 5.986392085361763, 5.9984219415132936, 6.010454308797909, 6.022489245538945, 6.034526810059737, 6.04656706068362, 6.058610055733923, 6.070655853533987, 6.082704512407141, 6.0947560906767215, 6.106810646666064, 6.118868238698499, 6.130928925097365, 6.142992764185993, 6.155059814287721, 6.16713013372588, 6.179203780823805, 6.191280813904831, 6.203361291292291, 6.21544527130952, 6.227532812279852, 6.2396239725266245, 6.2517188103731645, 6.263817384142814, 6.275919752158901, 6.288025972744768, 6.300136104223739, 6.312250204919154, 6.3243683331543465, 6.336490547252651, 6.348616905537401, 6.360747466331934, 6.37288228795958, 6.3850214287436735, 6.3971649470075524, 6.409312901074547, 6.421465349267994, 6.433622349911228, 6.44578396132758, 6.457950241840387, 6.4701212497729825, 6.482297043448702, 6.494477681190879, 6.506663221322846, 6.518853722167942, 6.5310492420494946, 6.5432498392908425, 6.55545557221532, 6.567666499146259, 6.579882678406997, 6.592104168320866, 6.6043310272112, 6.616563313401334, 6.628801085214604, 6.641044400974341, 6.65329331900388, 6.665547897626557, 6.677808195165705, 6.690074269944657, 6.702346180286753, 6.71462398451532, 6.726907740953697, 6.7391975079252155, 6.7514933437532125, 6.76379530676102, 6.776103455271973, 6.788417847609404, 6.800738542096652, 6.813065597057046, 6.825399070813923, 6.837739021690619, 6.850085508010465, 6.862438588096795, 6.874798320272946, 6.887164762862249, 6.899537974188043, 6.9119180125736595, 6.924304936342431, 6.936698803817694, 6.949099673322783, 6.96150760318103, 6.973922651715772, 6.9863448772503425, 6.998774338108075, 7.011211092612301, 7.023655199086363, 7.036106715853588, 7.0485657012373135, 7.061032213560871, 7.073506311147599, 7.085988052320828, 7.098477495403893, 7.110974698720127, 7.123479720592869, 7.1359926193454495, 7.148513453301202, 7.161042280783466, 7.173579160115571, 7.186124149620851, 7.198677307622642, 7.211238692444279, 7.223808362409093, 7.236386375840424, 7.248972791061601, 7.261567666395959, 7.274171060166834, 7.286783030697562, 7.299403636311472, 7.312032935331903, 7.324670986082186, 7.337317846885656, 7.349973576065648, 7.362638231945499, 7.375311872848538, 7.3879945570981045, 7.400686343017528, 7.413387288930146, 7.426097453159288, 7.438816894028294, 7.451545669860497, 7.464283838979229, 7.477031459707829, 7.489788590369625, 7.502555289287955, 7.515331614786153, 7.528117625187553, 7.540913378815486, 7.553718933993292, 7.566534349044302, 7.5793596822918525, 7.592194992059272, 7.6050403366699015, 7.617895774447075, 7.630761363714122, 7.643637162794377, 7.656523230011178, 7.66941962368786, 7.682326402147751, 7.695243623714193, 7.708171346710516, 7.721109629460054, 7.734058530286143, 7.747018107512116, 7.759988419461305, 7.772969524457048, 7.785961480822681, 7.798964346881535, 7.811978180956941, 7.82500304137224, 7.838038986450762, 7.851086074515842, 7.864144363890817, 7.87721391289902, 7.890294779863779, 7.903387023108438, 7.916490700956326, 7.929605871730779, 7.942732593755128, 7.955870925352711, 7.969020924846863, 7.982182650560913, 7.995356160818199, 8.008541513942053, 8.021738768255817, 8.034947982082816, 8.048169213746387, 8.061402521569864, 8.074647963876583, 8.087905598989881, 8.101175485233084, 8.114457680929531, 8.127752244402558, 8.141059233975497, 8.154378707971684, 8.16771072471445, 8.181055342527133, 8.194412619733063, 8.207782614655581, 8.221165385618015, 8.2345609909437, 8.247969488955972, 8.261390937978167, 8.274825396333615, 8.288272922345653, 8.301733574337618, 8.315207410632835, 8.32869448955465, 8.342194869426388, 8.355708608571387, 8.369235765312983, 8.382776397974506, 8.396330564879294, 8.409898324350678, 8.423479734711997, 8.437074854286582, 8.450683741397768, 8.464306454368886, 8.477943051523276, 8.491593591184266, 8.505258131675198, 8.518936731319403, 8.532629448440211, 8.54633634136096, 8.560057468404985, 8.57379288789562, 8.587542658156195, 8.60130683751005, 8.615085484280513, 8.628878640823663, 8.642686285626496, 8.656508381208743, 8.670344890090156, 8.684195774790462, 8.698060997829403, 8.711940521726712, 8.725834309002135, 8.739742322175402, 8.753664523766256, 8.767600876294427, 8.781551342279657, 8.795515884241686, 8.80949446470025, 8.823487046175085, 8.837493591185924, 8.851514062252516, 8.865548421894585, 8.879596632631884, 8.893658656984138, 8.907734457471086, 8.92182399661247, 8.93592723692803, 8.950044140937495, 8.964174671160606, 8.978318790117104, 8.992476460326724, 9.006647644309199, 9.020832304584275, 9.035030403671684, 9.049241904091163, 9.063466768362456, 9.077704959005294, 9.091956438539412, 9.106221169484558, 9.12049911436046, 9.13479023568686, 9.149094495983494, 9.163411857770098, 9.177742283566417, 9.192085735892181, 9.20644217726713, 9.220811570210998, 9.235193877243526, 9.249589060884453, 9.263997083653516, 9.278417908070447, 9.29285149665499, 9.307297811926881, 9.321756816405859, 9.336228472611655, 9.350712743064012, 9.365209590282664, 9.379718976787355, 9.394240865097816, 9.408775217733789, 9.423321997215007, 9.43788116606121, 9.452452686792139, 9.467036521927525, 9.48163263398711, 9.496240985490628, 9.510861538957817, 9.52549425690842, 9.540139101862168, 9.554796036338802, 9.569465022858056, 9.584146023939674, 9.59883900210339, 9.613543919868937, 9.628260739756062, 9.642989424284497, 9.657729935973972, 9.67248223734424, 9.687246290915027, 9.702022059206076, 9.716809504737121, 9.731608590027902, 9.746419277598159, 9.761241529967624, 9.776075309656035, 9.790920579183135, 9.805777301068657, 9.820645437832335, 9.83552495199392, 9.850415806073132, 9.865317962589723, 9.880231384063421, 9.895156033013967, 9.910091871961098, 9.925038863424554, 9.939996969924072, 9.954966153979385, 9.969946378110237, 9.98493760483636, 9.999939796677491, 10.014952916153375, 10.029976925783743, 10.045011788088335, 10.060057465586885, 10.075113920799138, 10.090181116244821, 10.10525901444368, 10.120347577915451, 10.13544676917987, 10.150556550756676, 10.1656768851656, 10.180807734926393, 10.195949062558782, 10.211100830582504, 10.226263001517303, 10.241435537882909, 10.256618402199065, 10.271811556985508, 10.287014964761976, 10.302228588048205, 10.317452389363932, 10.332686331228894, 10.34793037616283, 10.363184486685475, 10.378448625316569, 10.393722754575856, 10.409006836983059, 10.424300835057927, 10.439604711320193, 10.454918428289597, 10.470241948485874, 10.48557523442876, 10.500918248637996, 10.516270953633322, 10.531633311934472, 10.547005286061179, 10.562386838533184, 10.57777793187023, 10.593178528592047, 10.608588591218377, 10.624008082268956, 10.63943696426352, 10.654875199721811, 10.670322751163562, 10.685779581108513, 10.7012456520764, 10.71672092658696, 10.732205367159935, 10.747698936315055, 10.763201596572065, 10.778713310450701, 10.794234040470695, 10.809763749151788, 10.825302399013719, 10.840849952576226, 10.856406372359043, 10.87197162088191, 10.887545660664564, 10.90312845422674, 10.918719964088185, 10.93432015276862, 10.949928982787798, 10.965546416665449, 10.98117241692131, 10.996806946075129, 11.012449966646624, 11.02810144115555, 11.043761332121637, 11.059429602064625, 11.07510621350425, 11.090791128960246, 11.106484310952357, 11.122185722000314, 11.137895324623866, 11.153613081342739, 11.169338954676672, 11.185072907145406, 11.200814901268679, 11.216564899566224, 11.232322864557784, 11.248088758763092, 11.26386254470189, 11.279644184893911, 11.295433641858894, 11.311230878116575, 11.327035856186697, 11.342848538588997, 11.358668887843207, 11.374496866469066, 11.39033243698631, 11.406175561914681, 11.422026203773918, 11.43788432508375, 11.453749888363923, 11.46962285613417, 11.485503190914233, 11.501390855223843, 11.51728581158274, 11.533188022510664, 11.549097450527352, 11.565014058152538, 11.580937807905961, 11.59686866230736, 11.612806583876473, 11.628751535133036, 11.64470347859679, 11.660662376787464, 11.676628192224802, 11.692600887428545, 11.708580424918424, 11.724566767214178, 11.74055987683554, 11.756559716302258, 11.772566
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌟 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位、冷链、时间窗、多车场等、选址优化、港口岸桥调度优化、交通阻抗、重分配、停机位分配、机场航班调度、通信上传下载分配优化
🌟 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌟图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌟 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻、公交车时间调度、水库调度优化、多式联运优化
🌟 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划、
🌟 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌟 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌟电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)、电动汽车充放电优化、微电网日前日内优化、储能优化、家庭用电优化、供应链优化
🌟 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌟 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌟 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇
1919

被折叠的 条评论
为什么被折叠?



