【故障识别】基于蝗虫优化算法GOA优化门控单元GRU实现故障诊断附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

随着工业自动化程度的不断提升,设备故障识别与诊断变得至关重要。传统故障诊断方法往往依赖于专家经验,存在着效率低、可扩展性差等问题。近年来,深度学习技术在故障诊断领域取得了显著进展,其中循环神经网络 (RNN) 因其能够处理时序数据而成为一种热门选择。门控循环单元 (GRU) 作为 RNN 的一种变体,具有更强的学习能力和更快的训练速度,在故障诊断中表现出优异的性能。然而,GRU 的参数优化问题对诊断结果有着至关重要的影响,而传统优化算法在处理非线性、高维参数空间时往往难以取得最佳效果。

为了克服上述问题,本文提出了一种基于蝗虫优化算法 (GOA) 优化门控单元 GRU 的故障诊断方法。GOA 是一种新型群体智能优化算法,具有搜索效率高、易于实现等优点,可以有效解决 GRU 参数优化问题。通过将 GOA 与 GRU 结合,可以提高故障诊断的准确性和鲁棒性,为工业生产安全提供更加可靠的保障。

1. 问题描述

工业设备故障诊断问题可以描述为:根据设备运行状态监测数据,判断设备是否发生故障以及故障类型。对于时序数据,GRU 可以通过学习数据中的时间依赖性来实现故障诊断。GRU 的核心结构包括更新门和重置门,这两个门控机制控制着信息的传递和更新,从而有效地学习复杂的时间模式。

GRU 的参数优化目标是找到一组最佳参数,使模型能够在给定的训练数据上达到最佳的诊断精度。然而,GRU 的参数空间通常是非线性和高维的,这给传统优化算法带来了挑战。

2. 蝗虫优化算法 (GOA)

GOA 是一种受蝗虫群体行为启发的优化算法。蝗虫群体在觅食过程中会表现出多种行为,例如集群、移动、跳跃等。GOA 通过模拟这些行为来寻找最优解,其主要步骤如下:

  • 初始化种群: 生成一定数量的蝗虫个体,每个个体代表一组可能的解。

  • 计算适应度值: 根据预定义的适应度函数,计算每个蝗虫个体的适应度值,反映解的优劣程度。

  • 更新位置: 根据蝗虫个体的适应度值和群体行为模型,更新每个蝗虫个体的坐标位置。

  • 终止条件: 当满足预设的终止条件(例如最大迭代次数、适应度值精度等)时,算法停止运行。

3. 基于 GOA 优化 GRU 的故障诊断方法

本文提出的基于 GOA 优化 GRU 的故障诊断方法主要包括以下步骤:

  • 数据预处理: 对原始监测数据进行预处理,例如去噪、归一化等,使其符合 GRU 的输入要求。

  • 建立 GRU 模型: 根据数据特征和诊断任务,构建 GRU 模型,包括输入层、GRU 层和输出层。

  • 利用 GOA 优化 GRU 参数: 将 GRU 模型的参数作为 GOA 算法的优化目标,通过 GOA 算法搜索最佳参数组合。

  • 训练 GRU 模型: 使用优化后的参数训练 GRU 模型,使其能够在给定的训练数据上达到最佳的诊断精度。

  • 故障诊断: 利用训练好的 GRU 模型对新的监测数据进行诊断,识别设备故障类型。

4. 实验与结果分析

为了验证本文方法的有效性,进行了仿真实验。实验数据集采用来自某工业设备的实际运行状态监测数据,包括正常运行状态和多种故障状态。实验结果表明,基于 GOA 优化 GRU 的故障诊断方法在准确率、召回率和 F1 值等指标方面均优于传统的 GRU 模型和其它优化算法。

5. 结论

本文提出了一种基于蝗虫优化算法 GOA 优化门控单元 GRU 的故障诊断方法。该方法通过 GOA 算法有效地优化了 GRU 模型的参数,提高了故障诊断的准确性和鲁棒性。实验结果表明,该方法在工业设备故障诊断中具有较好的应用价值,为工业生产安全提供了有力保障。

⛳️ 运行结果

🔗 参考文献

[1] 刘自然,王煜轩.基于深度卷积GRU的转子系统故障诊断[J].组合机床与自动化加工技术, 2023(1):101-104.

[2] 王力,李志新,张亦弛.基于红外的SSA-CNN-GRU电路板芯片故障诊断[J].激光与红外, 2023, 53(4):556-565.

[3] 张龙,甄灿壮,易剑昱,等.双通道特征融合CNN-GRU齿轮箱故障诊断[J].振动与冲击, 2021, 40(19):8.DOI:10.13465/j.cnki.jvs.2021.19.030.

[4] 周涛涛,张冬,原宗,等.一种基于GRU的旋转机械故障诊断方法:CN202011355499.X[P].CN112488179A[2024-07-13].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

MATLAB模式识别实现指标分类评估预测如环境业绩等-Use_For_Predict.m 最近看到很多会员需要使用MATLAB神经网络做如下的事情: 1:MATLAB神经网络对水的质量的分类、评估、预测 (属于环境类分类、评估预测) 2:MATLAB神经网络对空气质量的分类、评估、预测 (属于环境类分类、评估预测) 2:MATLAB神经网络对土壤质量的分类、评估、预测 (属于环境类分类、评估预测) 3:MATLAB神经网络对学员的个人表现进行分类、评估、预测 (属于个人业绩鉴定) 4:MATLAB神经网络对医学、生物学上的细胞、疾病等分类、评估等(属于医学、生物学) 5:MATLAB神经网络对交通、物流等效率方面的分类、评估、预测等(属于交通、物流管理) 6:MATLAB神经网络用于故障诊断 7:概括来讲,就是使用神经网络对某些指标(如空气质量、水质量、个人业绩等)进行“有限”的分类、预测、评价等。 在这里,我特别强调“有限”两个字,因为这正是模式识别工具箱可以解决的问题。我看到很多会员使用不同的神经网络(如模糊识别,RBF, SVM等)。根据我多年的使用经验,其实基于多层BP网络的模式识别是最容易实现、效果非常满意、且结果非常具有说服力。很多会员没有掌握模式识别的精髓,或者网络训练好以后不知道如何评估、使用等。现在我用一个完整的例子来给大家展示一下它的优点。 不知道什么是模式识别,什么是BP网络的会员,请先看一下这个视频:MATLAB模式识别工具箱视频教学 用MATLAB模式识别工具箱(函数)来对某些指标(如空气质量、水质量、个人业绩等)进行分类、评估、预测,分为三步: 数据准备训练和评估预测 下面我来一步一步讲解,先谈数据的准备: 确保输入数据(包括训练以及将来要预测的数据)在比较接近的范围里(归一化是其中一种方式)。 这一个步骤不仅仅是在模式识别里,其实在任何一种网络里,这一步都是必须的。比如说你有400组数据,每组数据对应一个中国县城的空气质量。假设每组数据含有6个指标(称之为A,B,C,D,E,F,G), 如果数据A的范围是10^5-10^7, F的范围是0.1-0.5, 如果用这些数据来训练,很容易导致网络的权重也有同样的数量级的差别,结果是你的网络会非常的“敏感”(可以想象一下,如果F对应的权重是10^10,那么即使F稍微变化一下,都有可能导致网络的输出结果不同。而有时候这样的敏感度并不是你想要的,你可以对数据进行归一化处理,把数据都转换到0-1的区间内。 MATLAB模式识别工具箱可以自动对输入数据进行归一化处理,所以你只要明白这个过程,但是并不需要你额外写程序来处理这些数据。对输出数据进行二进制量化 通常情况下,用于测试的输入数据所对应的输出数据不是量化数据,比如说:优、良,或者是一级、二级等等。那么通常我们用二进制来表达,两位数字的二进制可以表示3类(01,10,11),三位数字的二进制可以表示7类(001,010,011,100,101,110,111,通常我们不使用000)。二进制的顺序不重要,比如说优可以对应001,也可以用010来表示。 经过简单处理,输入数据和新添加的二进制输入数据如下图所示: 神经网络——输入数据模式识别.png MATLAB模式识别实现指标分类、评估、预测 原始训练数据下载: training_data.xls MATLAB模式识别实现指标分类、评估、预测 把数据导入到MATLAB程序里close all clear all clc x=xlsread; y=xlsread; inputs = x'; targets = y';复制代码 我们再谈谈网络的训练和评估: 你可以使用MATLAB自带的模式识别工具箱界面来导入数据、调整参数等,然后得到结果。我通常第一次这样使用,得到一个基础架构以后,然后生成m代码,再在代码上修改。这里我演示给大家,如果通过程序来实现。下面是用来做模式识别的代码(工具箱产生的函数): % 创建一个模式识别网络(两层BP网络),同时给出中间层神经元的个数,这里使用20 hiddenLayerSize = 20; net = patternnet; % 对数据进行预处理,这里使用了归一化函数(一般不用修改) % For a list of all processing functions type: help nnprocess net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; net.o
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值