一、简介

A算法
A算法是一种典型的启发式搜索算法,建立在Dijkstra算法的基础之上,广泛应用于游戏地图、现实世界中,用来寻找两点之间的最短路径。A算法最主要的是维护了一个启发式估价函数,如式(1)所示。
f(n)=g(n)+h(n)(1)
其中,f(n)是算法在搜索到每个节点时,其对应的启发函数。它由两部分组成,第一部分g(n)是起始节点到当前节点实际的通行代价,第二部分h(n)是当前节点到终点的通行代价的估计值。算法每次在扩展时,都选取f(n)值最小的那个节点作为最优路径上的下一个节点。
在实际应用中,若以最短路程为优化目标,h(n)常取作当前点到终点的欧几里得距离(Euclidean Distance)或曼哈顿距离(Manhattan Distance)等。若令h(n)=0,表示没有利用任何当前节点与终点的信息,A算法就退化为非启发的Dijkstra算法,算法搜索空间随之变大,搜索时间变长。
A*算法步骤如下,算法维护两个集合:P表与Q表。P表存放那些已经搜索到、但还没加入最优路径树上的节点;Q表维护那些已加入最优路径树上的节点。
(1)P表、Q表置空,将起点S加入P表,其g值置0,父节点为空,路网中其他节点g值置为无穷大。
(2)若P表为空,则算法失败。否则选取P表中f值最小的那个节点,记为BT,将其加入Q表中。判断BT是否为终点T,若是,转到步骤(3);否则根据路网拓扑属性和交通规则找到BT的每个邻接节点NT,进行下列步骤:

①计算NT的启发值
f(NT)=g(NT)+h(NT)(2)
g(NT)=g(BT)+cost(BT, NT)(3)
其中,cost(BT, NT)是BT到NT的通行代价。
②如果NT在P表中,且通过式(3)计算的g值比NT原先的g值小,则将NT的g值更新为式(3)结果,并将NT的父节点设为BT。
③如果NT在Q表中,且通过式(3)计算的g值比NT原先的g值小,则将NT的g值更新为式(3)结果,将NT的父节点设为BT,并将NT移出到P表中。
④若NT既不在P表,也不在Q表中,则将NT的父节点设为BT,并将NT移到P表中。
⑤转到步骤(2)继续执行。
(3)从终点T回溯,依次找到父节点,并加入优化路径中,直到起点S,即可得出优化路径。

二、源代码

function varargout = A_GUI(varargin)
% A_GUI MATLAB code for A_GUI.fig
%      A_GUI, by itself, creates a new A_GUI or raises the existing
%      singleton*.
%
%      H = A_GUI returns the handle to a new A_GUI or the handle to
%      the existing singleton*.
%
%      A_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in A_GUI.M with the given input arguments.
%
%      A_GUI('Property','Value',...) creates a new A_GUI or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before A_GUI_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to A_GUI_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
 
% Edit the above text to modify the response to help A_GUI
 
% Last Modified by GUIDE v2.5 21-Oct-2018 17:10:48
 
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @A_GUI_OpeningFcn, ...
                   'gui_OutputFcn',  @A_GUI_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end
 
if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
 
 
% --- Executes just before A_GUI is made visible.
function A_GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to A_GUI (see VARARGIN)
 
% Choose default command line output for A_GUI
handles.output = hObject;
 
% Update handles structure
guidata(hObject, handles);
 
% UIWAIT makes A_GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
 
 
% --- Outputs from this function are returned to the command line.
function varargout = A_GUI_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
% Get default command line output from handles structure
varargout{1} = handles.output;
 
 
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
% set up color map for display 生成彩色地图 
global cmap;
global map;
global n_r;
global n_c;
global state;
 
cmap = [1 1 1; ...% 1 -白色-无障碍
        0 0 0; ...% 2 -黑色-有障碍
        0 0.8 0; ...% 3 -绿色-已搜索
        0 0.4 0; ...% 4 -粉色-正在搜索
        0 1 1; ...% 5 -浅蓝色-起始点
        1 1 0; ...% 6 -黄色-目标点
        0 0 1];   % 7 -蓝色-最终路径
colormap(cmap); 
%生成随机地图
map = zeros(n_r,n_c);
randmap = rand(n_r,n_c);
for i = 2:(sub2ind(size(randmap),n_r,n_c)-1)
    if (randmap(i) >= 0.75)
        map(i) = 2;
    end
end
 
map(1, 1) = 5; % start_coords 起点坐标
map(n_r, n_c) = 6; % dest_coords 终点坐标
image(1.5,1.5,map); 
grid on; 
axis image; 
set(handles.text5,'string','随机地图生成完毕');
 
 
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
 
%搜索最佳路径
global n_r;
global n_c;
global cmap;
global map;
global state;
 
nrows = n_r; 
ncols = n_c; 
start_node = sub2ind(size(map), 1, 1); 
%sub2ind()函数将矩阵中的某个元素的线性序号计算出来
%线性索引号例子:2*2矩阵[1 3;中,1是第一个,5是第二个
%                       5 7]  ,3是第三个,7是第四个
%(matlab是列优先,不是我们通常习惯的行优先)
dest_node = sub2ind(size(map), n_r, n_c); 
% Initialize distance array 初始化距离数组
distanceFromStart = Inf(nrows,ncols); 
distanceFromStart(start_node) = 0 ;
 
[X, Y] = meshgrid (1:ncols, 1:nrows);
H = abs(Y - n_r) + abs(X - n_c);
f = Inf(nrows,ncols); 
f(start_node) = H(start_node); 
 
% For each grid cell this array holds the index of its parent 对于每个网格单元,该数组都保存其父单元的索引
parent = zeros(nrows,ncols); 
 % Main Loop 
while true 
  % Draw current map 
  map(start_node) = 5; 
  map(dest_node) = 6; 
  image(1.5, 1.5, map); 
  grid on; %网格
  axis image; %显示坐标
  drawnow; %刷新屏幕
  % Find the node with the minimum distance 找到距离最短的节点
%   [min_dist, current] = min(distanceFromStart(:));
[~, current] = min(f(:)); [min_dist, ~] = min(distanceFromStart(:));
  if ((current == dest_node) || isinf(min_dist)) %TF = isinf(A)  返回一个和A尺寸一样的数组, 如果A中某个元素是inf  (无穷), 则对应TF中元素是1, 否则TF中对应元素是0。 
       break; 
  end; 
  %搜索中心的索引坐标:current,
  %搜索中心与起始点的路程:min_dist
  % 这两个值后面会用。
 
  map(current) = 3; 
%   distanceFromStart(current) = Inf; 
f(current) = Inf; 
  [i, j] = ind2sub(size(distanceFromStart), current); %索引号变为坐标
  neighbor = [i-1,j; 
              i+1,j; 
              i,j+1; 
              i,j-1]; 
    outRangetest = (neighbor(:,1)<1) + (neighbor(:,1)>nrows)+(neighbor(:,2)<1) + (neighbor(:,2)>ncols); 
    locate = find(outRangetest>0);  %返回outRangetest中大于0的元素的相对应的线性索引值。
    neighbor(locate,:)=[]; 
    neighborIndex = sub2ind(size(map),neighbor(:,1),neighbor(:,2));
for i=1:length(neighborIndex) 
 if (map(neighborIndex(i))~=2) && (map(neighborIndex(i))~=3 && map(neighborIndex(i))~= 5) 
     map(neighborIndex(i)) = 4; 
   if (distanceFromStart(neighborIndex(i))>= min_dist + 1 )     
       distanceFromStart(neighborIndex(i)) = min_dist+1;
         parent(neighborIndex(i)) = current;   
         f(neighborIndex(i)) = H(neighborIndex(i)); 
        % pause(0.02); 
   end 
  end 
 end 
 end
% %%
 if (isinf(distanceFromStart(dest_node))) 
     %route = [];
     disp('路径搜索失败');
     set(handles.text5,'string','路径搜索失败');
 else 
     %提取路线坐标
     set(handles.text5,'string','路径搜索成功');
 
     route = [dest_node];
       while (parent(route(1)) ~= 0) 
               route(1);
               parent(route(1))
               route = [parent(route(1)), route] ;
        end 
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.

三、运行结果

【路径规划】基于A星算法之求解最短路径matlab GUI_matlab