一个简化的群搜索优化算法表示为大规模全局优化“SGSO” 提出了获得一个简单的算法性能优越在高维问题。SGSO采用一种改进的共享策略,使用一个简单的搜索方法搜索的角度。
function [fbestval,bestmember,Best] = SGSOforLS(fname,NDim,MaxIter)
% function [fbestval,bestmember,Best] = SGSOforLS(fname,NDim,MaxIter)
% Simplified Group Search Optimizer Algorithm for Large Scale Global Optimization
% Input Arguments:
% fname - the name of the evaluation .m function
% NDim - dimension of the evalation function
% MaxIter - maximum iteration
% Example:
PopSize=51; % population of members
% Defined lower bound and upper bound.
Bound=eval(fname);
LowerBound=zeros(NDim,1)+Bound(:,1);
UpperBound=zeros(NDim,1)+Bound(:,2);
basestep=0.5*(UpperBound-LowerBound);
% Initialize swarm population
population=rand(NDim, PopSize).*(repmat(UpperBound-LowerBound,1,PopSize)) + repmat(LowerBound,1,PopSize);
for iteration=1:MaxIter
if (iteration)/5000==floor((iteration)/5000)
fprintf(1,'%e ',fSequence(1));
if (iteration)/25000==floor((iteration)/25000)
fprintf(1,'\n');
end
end
end
fbestval=fSequence(1);
% bestmember
% population
% fn=strcat(fname,'n',num2str(floor(rand(1)*1000)));
% dlmwrite(strcat(fn,'.txt'),Best);
plot(log10(Best))- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.

544

被折叠的 条评论
为什么被折叠?



