





%% Compressed sensing MRI reconstruction based SIDWT
clear all
close all
clc
currentFolder = pwd;
addpath(genpath(currentFolder));
%% data
load im1
figure,imshow(abs(im1)); title('fully-sampled image') % fully sampled image.
[row,column]=size(im1);
%% masks
load mask1
paramSIDWT.Fu=Fu_downsample(mask1,row,column);
paramSIDWT.U=mask_downsample(mask1,row,column);
y1 = paramSIDWT.Fu * im1;
zerofilling = ifft2c(paramSIDWT.U'*y1);
figure,imshow(abs(ifft2c(paramSIDWT.U'*y1))); title('undersampled k-space data')
%% SIDWT paramters analysis
filterType = 'Daubechies'; filterSize = 4;
wavScale = 4; complex_Yes = 1;
paramSIDWT.psi = SIDWT(filterType,filterSize,wavScale,complex_Yes); % define the shift-invariant wavelets operator
paramSIDWT.lamda=5*1e3;
tic;im1_Rec=solver_ADMC(y1,mask1,paramSIDWT);time_SIDWT_CS1=toc % solve the L1 norm minimization problem with ADMC
Evaluation_ana = Evaluation_CS_MRI(im1,im1_Rec)
%% synthesis
for lamda=10:20:1e3
paramSIDWT.lamda=lamda;
alpha=solver_ADMC_syn(y1,mask1,paramSIDWT);
Rim = paramSIDWT.psi' *alpha;
Evaluation_syn = Evaluation_CS_MRI(im1,Rim)
end
Evaluation_zerofilling = Evaluation_CS_MRI(im1,zerofilling)
figure,imshow(abs(im1_Rec));title('Reconstructed image')- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.



压缩感知MRI重建
3804

被折叠的 条评论
为什么被折叠?



