1 简介

【优化求解】基于School Based Optimization (SBO)求解单目标_优化算法

【优化求解】基于School Based Optimization (SBO)求解单目标_优化算法_02

【优化求解】基于School Based Optimization (SBO)求解单目标_优化算法_03

【优化求解】基于School Based Optimization (SBO)求解单目标_优化算法_04

【优化求解】基于School Based Optimization (SBO)求解单目标_优化算法_05

2 部分代码

%% This function implements the basic School Based Optimization (SBO) algorithm for 10-bar truss optimization
  • 1.
%%
  • 1.
clc
  • 1.
clear all
  • 1.
close all
  • 1.
global D
  • 1.
% Specity SBO parameters
  • 1.
Itmax=300; % Maximum number of iterations
  • 1.
NClass=5; % Number of classes in the school
  • 1.
PopSize=15; % Population size of each class
  • 1.
% Optimization problem parameters
  • 1.
D=Data10; % For truss function evaluate the functio to get the initial parameters
  • 1.
LB=D.LB; % Lowerbound
  • 1.
UB=D.UB; % Upperbound
  • 1.
FN='ST10'; % Name of analyzer function
  • 1.
%% Randomely generate initial designs between LB and UB
  • 1.
Cycle=1;
  • 1.
for I=1:PopSize
  • 1.
for NC=1:NClass
  • 1.
Designs{NC}(I,:)=LB+rand(1,size(LB,2)).*(UB-LB); % Row vector
  • 1.
end
  • 1.
end
  • 1.
% Analysis the designs
  • 1.
for NC=1:NClass
  • 1.
[PObj{NC},Obj{NC}]=Analyser(Designs{NC},FN);
  • 1.
Best{NC}=[];
  • 1.
end
  • 1.
%% SBO loop
  • 1.
for Cycle=2:Itmax
  • 1.
for NC=1:NClass
  • 1.
% Identify best designs and keep them
  • 1.
[Best{NC},Designs{NC},PObj{NC},Obj{NC},WMeanPos{NC}]=Specifier(PObj{NC},Obj{NC},Designs{NC},Best{NC});
  • 1.
TeachersPObj(NC,1)=Best{NC}.GBest.PObj;
  • 1.
TeachersDes(NC,:)=Best{NC}.GBest.Design;
  • 1.
end
  • 1.
for NC=1:NClass
  • 1.
% Select a teacher
  • 1.
SelectedTeacher=TeacherSelector(Best,NC,TeachersPObj);
  • 1.
% Apply Teaching
  • 1.
[Designs{NC},PObj{NC},Obj{NC}]=Teaching(LB,UB,Designs{NC},PObj{NC},Obj{NC},TeachersDes(SelectedTeacher,:),WMeanPos{NC},FN);
  • 1.
[Best{NC},Designs{NC},PObj{NC},Obj{NC},WMeanPos{NC}]=Specifier(PObj{NC},Obj{NC},Designs{NC},Best{NC});
  • 1.
% Apply Learning
  • 1.
[Designs{NC},PObj{NC},Obj{NC}]=Learning(LB,UB,Designs{NC},Obj{NC},PObj{NC},FN);
  • 1.
[Best{NC},Designs{NC},PObj{NC},Obj{NC},WMeanPos{NC}]=Specifier(PObj{NC},Obj{NC},Designs{NC},Best{NC});
  • 1.
end
  • 1.
% Find best so far solution and Mean
  • 1.
CumPObj=[];
  • 1.
for NC=1:NClass
  • 1.
ClassBestPObj(NC,1)=Best{NC}.GBest.PObj;
  • 1.
ClassMean(NC,1)=mean(PObj{NC});
  • 1.
CumPObj=[CumPObj;PObj{NC}];
  • 1.
end
  • 1.
[~,b]=min(ClassBestPObj);
  • 1.
OveralBestPObj=Best{b}.GBest.PObj;
  • 1.
OveralBestObj=Best{b}.GBest.Obj;
  • 1.
OveralBestDes=Best{b}.GBest.Design;
  • 1.
% Plot time history of the best solution vs. iteration and print the
  • 1.
% results
  • 1.
hold on;plot(Cycle,Best{b}.GBest.PObj,'b*');xlabel('Iteration');ylabel('Best solution value');pause(0.0001)
  • 1.
fprintf('Cycle: %6d, Best (Penalized): %6.4f, Objective: %6.4f\n',Cycle,OveralBestPObj,OveralBestObj);
  • 1.
end
  • 1.
Solution.PObj=OveralBestPObj;% Objective value for best non-penalized solution
  • 1.
Solution.Design=OveralBestDes;% Design for best non-penalized solution
  • 1.
img =gcf; %获取当前画图的句柄
  • 1.
print(img, '-dpng', '-r600', './img.png') %即可得到对应格式和期望dpi的图像
  • 1.
%% Save the results
  • 1.
save('SBO_Results.mat','Solution')
  • 1.

3 仿真结果

【优化求解】基于School Based Optimization (SBO)求解单目标_优化算法_06

4 参考文献

[1] Farshchin, M. , et al. "School based optimization algorithm for design of steel frames." Engineering Structures 171(2018):326-335.

【优化求解】基于School Based Optimization (SBO)求解单目标_优化算法_07