5.5

代码:
import numpy as np
from scipy.optimize import minimize
def objective(x):
x1, x2, x3 = x
return -(2*x1 + 3*x1**2 + 3*x2 + x2**2 + x3)
constraints = [
{'type': 'ineq', 'fun': lambda x: 10 - (x[0] + 2*x[0]**2 + x[1] + 2*x[1]**2 + x[2])},
{'type': 'ineq', 'fun': lambda x: 50 - (x[0] + x[0]**2 + x[1] + x[1]**2 - x[2])},
{'type': 'ineq', 'fun': lambda x: 40 - (2*x[0] + x[0]**2 + 2*x[1] + x[2])},
{'type': 'eq', 'fun': lambda x: 2 - (x[0]**2 + x[2])},
{'type': 'ineq', 'fun': lambda x: x[0] + 2*x[1] - 1}
]
bounds = [(0, None), (None, None), (None, None)]
x0 = [0, 0, 0]
result = minimize(objective, x0, bounds=bounds, constraints=constraints)
if result.success:
print("Optimal solution found:")
print("x1 =", result.x[0])
print("x2 =", result.x[1])
print("x3 =", result.x[2])
print("Maximum f(x) =", -result.fun)
else:
print("Optimization failed.")
结果:
Optimal solution found:
x1 = 2.3333333314551923
x2 = 0.1666666730500357
x3 = -3.4444444356792134
Maximum f(x) = 18.083333333326205
2047

被折叠的 条评论
为什么被折叠?



