HDU2554 N对数的排列

本文探讨了一种特殊的数列排列问题,即对于1到n的每一对数字,要求两个相同数字间恰好间隔指定数量的其他数字,并给出了求解该问题的有效方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这题可以这样来抽象:

n对数,大小为1、2、3、...、n。现要求两个1之间有1个数,两个2之间有2个数,以此类推,两个n之间有n个数。

并且,数的次序可以随意的。

 

解决之道:

准备知识:

①n对数,共2*n个数。所以要有2*n个位置来放置这2*n个数。②sum()表示求和运算。

正式解决:

①设k(k=1,2,..,n)放置的第一个位置ak,第二个位置bk。显然有bk-ak=k+1(假定下一个位置在上一个位置之前)。

那么会有sum(bk-ak)=2+3+4+...+(n+1)=(1+2+3+...+n)+(1+1+...+1)=n*(n+1)/2+n。

②又因为要有2*n个位置来放置这2*n个数。则sum(ak+bk)=1+2+3+...+2*n=(1+2*n)*(2*n)/2=(1+2*n)*n。

③sum(ak+bk)=sum(ak+ak+k+1)=sum(2*ak+bk-ak)=2*sum(ak)+sum(bk-ak)=2*sum(ak)+n*(n+1)/2+n。

④比较②③可得:(1+2*n)*n=2*sum(ak)+n*(n+1)/2+n。可得sum(ak)=n*(3*n-1)/4。

⑤就像前面已经说过的一样,ak表示数k第一次出现的位置。ak不易确定。当可以肯定的是sum(ak)一定为正整数。

那么就会有n=4*p或者3*n-1=4*p(p为正整数)。

 

写在最后:

这题也是问了一个不认识的哥们才得到这样一种思路。也欢迎大家说出自己的思路。共同探讨。

 

AC代码:31MS,换成cin、cout就会TLE了!!!不知道为啥?

#include<iostream>
using namespace std;

int main()
{
	int n;

	while(scanf("%d",&n) && n)
	{
		if(n%4==0 || (3*n-1)%4==0)
		    puts("Y");	    //printf("Y\n"); 
		else
		    printf("N\n");   //puts("N");
	}

	return 0;
}


 

 

 

### HDU OJ 排列组合问题解法 排列组合问题是算法竞赛中的常见题型之一,涉及数学基础以及高效的实现技巧。以下是关于如何解决此类问题的一些通用方法和具体实例。 #### 数学基础知识 在处理排列组合问题时,需要熟悉以下几个基本概念: - **阶乘计算**:用于求解全排列的数量 $ n! = n \times (n-1) \times ... \times 1 $[^4]。 - **组合数公式**:$ C(n, k) = \frac{n!}{k!(n-k)!} $ 表示从 $ n $ 中选取 $ k $ 的方案数[^5]。 - **快速幂运算**:当涉及到模运算时,可以利用费马小定理优化逆元的计算[^6]。 #### 题目推荐与分析 以下是一些典型的 HDU OJ 上的排列组合题目及其可能的解法: ##### 1. 基础排列组合计数 - **HDU 2039 近似数** - 描述:给定两个整数 $ a $ 和 $ b $,统计区间内的近似数数量。 - 方法:通过枚举每一位上的可能性来构建合法数字并计数[^7]。 ```cpp #include <iostream> using namespace std; long long comb(int n, int r){ if(r > n || r < 0)return 0; long long res=1; for(int i=1;i<=r;i++)res=res*(n-i+1)/i; return res; } int main(){ int t,n,k; cin>>t; while(t--){ cin>>n>>k; cout<<comb(n+k-1,k)<<endl; // 组合数应用 } } ``` ##### 2. 动态规划的应用 - **HDU 1028 Ignatius and the Princess III** - 描述:给出正整数 $ m $ 和 $ n $,问有多少种方式把 $ m $ 分成最多 $ n $ 份。 - 方法:定义状态转移方程 $ dp[i][j]=dp[i-1][j]+dp[i][j-i] $ 来表示当前总和为 $ j $ 并分成至多 $ i $ 份的情况数目[^8]。 ```cpp #include<bits/stdc++.h> using namespace std; const int MAXN=1e3+5; long long c[MAXN][MAXN]; void init(){ memset(c,0,sizeof(c)); c[0][0]=1; for(int i=1;i<MAXN;i++){ c[i][0]=c[i][i]=1; for(int j=1;j<i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j])%(1e9+7); } } int main(){ init(); int T,m,n; scanf("%d",&T); while(T--){ scanf("%d%d",&m,&n); printf("%lld\n",c[m+n-1][min(m,n)]); } } ``` #### 总结 针对不同类型的排列组合问题,可以选择合适的工具和技术加以应对。无论是简单的直接计算还是复杂的动态规划模型,都需要扎实的基础知识作为支撑。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值