POJ 1240 Pre-Post-erous! 前序+后序遍历判断树的形状的数量

Pre-Post-erous!
Time Limit: 1000MS      Memory Limit: 10000K
Total Submissions: 2356     Accepted: 1450

Description
We are all familiar with pre-order, in-order and post-order traversals of binary trees. A common problem in data structure classes is to find the pre-order traversal of a binary tree when given the in-order and post-order traversals. Alternatively, you can find the post-order traversal when given the in-order and pre-order. However, in general you cannot determine the in-order traversal of a tree when given its pre-order and post-order traversals. Consider the four binary trees below:


    a   a   a   a

   /   /     \   \

  b   b       b   b

 /     \     /     \

c       c   c       c


All of these trees have the same pre-order and post-order traversals. This phenomenon is not restricted to binary trees, but holds for general m-ary trees as well.

Input
Input will consist of multiple problem instances. Each instance will consist of a line of the form
m s1 s2
indicating that the trees are m-ary trees, s1 is the pre-order traversal and s2 is the post-order traversal.All traversal strings will consist of lowercase alphabetic characters. For all input instances, 1 <= m <= 20 and the length of s1 and s2 will be between 1 and 26 inclusive. If the length of s1 is k (which is the same as the length of s2, of course), the first k letters of the alphabet will be used in the strings. An input line of 0 will terminate the input.

Output
For each problem instance, you should output one line containing the number of possible trees which would result in the pre-order and post-order traversals for the instance. All output values will be within the range of a 32-bit signed integer. For each problem instance, you are guaranteed that there is at least one tree with the given pre-order and post-order traversals.

Sample Input

2 abc cba
2 abc bca
10 abc bca
13 abejkcfghid jkebfghicda
0

Sample Output

4
1
45
207352860

Source
East Central North America 2002

题意很简单 给出一颗n叉树的前序遍历和后序遍历 求树的可能形状的数量
pre[0-len]表示为子树的前序遍历
post[0-len]为子树的后序遍历

pre[0]必定为树根
pre[1]必定为树根的最左边的儿子
令j=pre[1]在post(后序遍历)中的下标
则post[0,j]就是以post[j]为根的子树后序遍历
pre[1,1+j-sPost]就是前序遍历
pre[1+j-sPost+1]就是树根pre[0]的第2个儿子的根节点
递归下去 统计每棵树的树根有几个儿子
C(儿子个数,n)儿子1的形状个数儿子2的形状个数*….儿子n的形状个数
就是这棵树的形状个数

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

char pre[30];
char post[30];

inline int C(int m,int n){
    if(m==0)
        return 1;
    if(n==m)
        return 1;
    return C(m,n-1)+C(m-1,n-1);
}

int f(int sPre,int ePre,int sPost,int ePost,int n){
    int root=pre[sPre];
    int numOfChild=0;//以root为根 有几个儿子
    int ans=1;
    int tmp=sPost;
    for(int i=sPre+1;i<=ePre;){
        char child=pre[i];
        ++numOfChild;
        int len=0,j;
        for(j=sPost;j<=ePost;++j){
            if(post[j]==child){
                len=j-tmp+1;//这颗子树的长度or节点个数
                ans*=f(i,i+len-1,tmp,j,n);
                tmp=j+1;//记录下一个儿子为根的子树从哪个下标开始
                break;
            }
        }
        i+=len;//下一个儿子的下标
    }
    return ans*C(numOfChild,n);
}

int main()
{
    //freopen("/home/lu/文档/r.txt","r",stdin);
    //freopen("/home/lu/文档/w.txt","w",stdout);
    int n;
    while(~scanf("%d%s%s",&n,pre,post),n){
        int len=strlen(pre);
        printf("%d\n",f(0,len-1,0,len-1,n));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值