51NOD 1523 非回文

本文探讨了如何找出字典序比给定非回文串大的最短非回文串,提供了一种有效的算法实现,并附带源代码。适用于算法竞赛及字符串处理问题。
1523 非回文
题目来源: CodeForces
基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题

一个字符串是非回文的,当且仅当,他只由前p个小写字母构成,而且他不包含长度大于等于2的回文子串。

给出长度为n的非回文串s。请找出字典序比s大的,而且字典序要最小的长度为n的非回文。

Input

单组测试数据。
第一行有两个整数n 和p (1≤n≤1000; 1≤p≤26)。
第二行包含一个字符串s,它的长度是n。输入保证他是非回文的。

Output

输出字典序比s大的且字典序要最小的长度为n的非回文,如果不存在输出NO。

Input示例

样例输入1
3 3
cba
样例输入2
3 4
cba

Output示例

样例输出1
NO
样例输出2
cbd

不难发现 满足:

s[i]!=s[i-1]     i>=1
s[i]!=s[i-2]     i>=2

的串都是非回文串
从右往左找一个s[i] 满足存在一个s’[i] 使得s[0],s[1],…s[i-1],s’[i]满足非回文性质
然后构造s[i+1],s[i+2],…s[n-1]即可
如果不存在这样的s[i] 则不存在更大的非回文串 而且不难发现 只有当p<=3时 才可能不存在

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

const int N=1e3+5;
char s[N];

void slove(int n,int p){
    int i,j;
    const int P='a'+p-1;
    for(i=n-1;i>=0;--i){
        for(j=s[i]+1;j<=P;++j){
            if(i>=2&&j==s[i-2])
                continue;
            if(i>=1&&j==s[i-1])
                continue;
            s[i]=j;
            break;
        }
        if(j<=P)
            break;
    }
    if(i<0){
        printf("NO\n");
    }
    else{
        for(int k=i+1;k<n;++k){
            for(int l='a';l<=P;++l){
                if(k>=1&&l==s[k-1])
                    continue;
                if(k>=2&&l==s[k-2])
                    continue;
                s[k]=l;
                break;;
            }
        }
        printf("%s\n",s);
    }
}

int main()
{
    //freopen("/home/lu/文档/r.txt","r",stdin);
    //freopen("/home/lu/文档/w.txt","w",stdout);
    int n,p;
    while(~scanf("%d%d%s",&n,&p,s))
        slove(n,p);
    return 0;
}
题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值