51NOD 1521 一维战舰

本文介绍了一种解决一维战舰游戏问题的算法,通过维护已查询格子的集合和可放置战舰的最大数量来判断玩家是否撒谎。利用set数据结构优化查找过程,实现O(log m)的时间复杂度。
1521 一维战舰
题目来源: CodeForces
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
收藏
关注

爱丽丝和鲍博喜欢玩一维战舰的游戏。他们在一行有n个方格的纸上玩这个游戏(也就是1×n的表格)。

在游戏开始的时候,爱丽丝放k个战舰在这个表格中,并不把具体位置告诉鲍博。每一只战舰的形状是 1×a 的长方形(也就是说,战舰会占据a个连续的方格)。这些战舰不能相互重叠,也不能相接触。

然后鲍博会做一系列的点名。当他点到某个格子的时候,爱丽丝会告诉他那个格子是否被某只战舰占据。如果是,就说hit,否则就说miss。

但是这儿有一个问题!爱丽丝喜欢撒谎。他每次都会告诉鲍博miss。

请你帮助鲍博证明爱丽丝撒谎了,请找出哪一步之后爱丽丝肯定撒谎了。

Input

单组测试数据。
第一行有三个整数n,k和a(1≤n,k,a≤2*10^5),表示表格的大小,战舰的数目,还有战舰的大小。输入的n,k,a保证是能够在1×n的表格中放入k只大小为a的战舰,并且他们之间不重叠也不接触。
第二行是一个整数m(1≤m≤n),表示鲍博的点名次数。
第三行有m个不同的整数x1,x2,...,xm,xi是鲍博第i次点名的格子编号。格子从左到右按照1到n编号。

Output

输出一个整数,表示最早一次能够证明爱丽丝一定撒谎的点名编号。如果不能证明,输出-1。点名的编号依次从1到m编号。

Input示例

样例1
11 3 3
5
4 8 6 1 11

样例2
5 1 3
2
1 5

Output示例

样例输出1
3

样例输出2
-1

不难发现 当有一片连续的格子 长度为
2a+1 ->能放2艘战舰
3a+2 ->3艘
4a+3 ->4艘
所以 (L+1)/(a+1)能判断长度为L的连续格子能放几个战舰
维护一个canPlace 表示最多能放多少艘战舰
如果加入一次询问 就把询问的位置所在的连续区域断开
长度为L的区域变为 L1+L2的2段 而且L1+L2+1=L
(L+1)/(a+1)-(L1+1)/(a+1)-(L2+1)/(a+1)就得到canPlace减少的数量
用set维护已经查询过的点 每次找到L的2个端点只需要O(log(m))
复杂度为m*log(m)

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

set<int>exist;
int canPlace;
int n,k,a;

bool canInsert(int pos){
    if(exist.find(pos)!=exist.end())//已经询问过pos了
        return true;
    exist.insert(pos);
    auto it=exist.find(pos);
    int L1,L2;
    auto before=it;
    auto after=it;
    ++after;
    if(it==exist.begin())
        L1=pos-1;
    else{
        --before;
        L1=pos-*before-1;
    }
    if(after==exist.cend())
        L2=n-pos;
    else{
        L2=*after-pos-1;
    }
    canPlace-=(L1+L2+1+1)/(a+1)-(L1+1)/(a+1)-(L2+1)/(a+1);
    return canPlace>=k;
}

int main()
{
    //freopen("/home/lu/文档/r.txt","r",stdin);
    //freopen("/home/lu/文档/w.txt","w",stdout);
    int m,pos,i;
    bool flag;
    while(~scanf("%d%d%d",&n,&k,&a)){
        exist.clear();
        canPlace=(n+1)/(a+1);
        scanf("%d",&m);
        flag=false;//标记是否已经发现撒谎
        for(i=1;i<=m;++i){
            scanf("%d",&pos);
            if((!flag)&&(!canInsert(pos))){
                printf("%d\n",i);
                flag=true;
            }
        }
        if(!flag)
            printf("-1\n");
    }
    return 0;
}
题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值