QSC and Master 2016沈阳网赛

本文介绍了一个名为QSCandMaster的算法挑战问题,该问题要求从一系列包含键值对的数据中找出最大得分组合。文章详细解释了问题背景、输入输出格式、样例输入输出及算法实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

QSC and Master
Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 0    Accepted Submission(s): 0


Problem Description
Every school has some legends, Northeastern University is the same.

Enter from the north gate of Northeastern University,You are facing the main building of Northeastern University.Ninety-nine percent of the students have not been there,It is said that there is a monster in it.

QSCI am a curious NEU_ACMer,This is the story he told us.

It’s a certain period,QSCI am in a dark night, secretly sneaked into the East Building,hope to see the master.After a serious search,He finally saw the little master in a dark corner. The master said:

“You and I, we're interfacing.please solve my little puzzle!

There are N pairs of numbers,Each pair consists of a key and a value,Now you need to move out some of the pairs to get the score.You can move out two continuous pairs,if and only if their keys are non coprime(their gcd is not one).The final score you get is the sum of all pair’s value which be moved out. May I ask how many points you can get the most?

The answer you give is directly related to your final exam results~The young man~”

QSC is very sad when he told the story,He failed his linear algebra that year because he didn't work out the puzzle.

Could you solve this puzzle?

(Data range:1<=N<=300
1<=Ai.key<=1,000,000,000
0<Ai.value<=1,000,000,000)


Input
First line contains a integer T,means there are T(1≤T≤10) test case。

  Each test case start with one integer N . Next line contains N integers,means Ai.key.Next line contains N integers,means Ai.value.


Output
For each test case,output the max score you could get in a line.


Sample Input

3
3
1 2 3
1 1 1
3
1 2 4
1 1 1
4
1 3 4 3
1 1 1 1




Sample Output

0
2
0
d[i][j]=下标为i到j的子pair
sum[i]=前i个pair的价值的总和
①当i+1 --- j-1的子段全部被消去时 即sum[j-1]-sum[i]==d[i+1][j-1]时
i和j变成相邻的pair对 如果gcd(key[i],key[j])!=0  可以被消去
if(sum[j-1]-sum[i]==d[i-1][j-1]){
    d[i][j]=max(d[i][j],d[i+1][j-1])
    if(gcd(key[i],key[j]!=1)
        d[i][j]=max(d[i][j],d[i+1][j-1]+v[i]+v[j])
}
②显然 i--j的子段 可以被划分为 i -- k 和 k+1 --- j
d[i][j]=max{ d[i][j] , d[i][k]+d[k+1][j] }   i<=k<=j

显然 跑一遍如果任意d[i][j]都没有更新值,再跑几遍也不会改变 而结果也就是d[1][n]了

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
#include<fstream>
#include<bitset>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007

const int N=305;

ll a[N];
ll v[N];
ll sum[N];
ll d[N][N];

ll gcd(ll a,ll b){
    return b?gcd(b,a%b):a;
}

ll dp(int n){
    for(int i=1;i<=n;++i)
        fill(d[i],d[i]+n+1,0);
    for(int i=1;i<n;++i)
        if(gcd(a[i],a[i+1])!=1)
            d[i][i+1]=v[i]+v[i+1];
    bool update=true;
    while(update){
        update=false;
        for(int i=1;i<=n;++i)
            for(int j=i+2;j<=n;++j){
                if((j-1>i+1)&&(sum[j-1]-sum[i]==d[i+1][j-1])){
                    if(d[i+1][j-1]>d[i][j]){
                        d[i][j]=d[i+1][j-1];
                        update=true;
                    }
                    if((d[i+1][j-1]+v[i]+v[j]>d[i][j])&&(gcd(a[i],a[j])!=1)){
                        d[i][j]=d[i+1][j-1]+v[i]+v[j];
                        update=true;
                    }
                }
                for(int k=i;k<j;++k){
                    if(d[i][k]+d[k+1][j]>d[i][j]){
                        d[i][j]=d[i][k]+d[k+1][j];
                        update=true;
                    }
                }
            }
    }
    return d[1][n];
}

int main()
{
    //freopen("/home/lu/文档/r.txt","r",stdin);
    //freopen("/home/lu/文档/w.txt","w",stdout);
    int t;
    scanf("%d",&t);
    while(t--){
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;++i)
            scanf("%lld",a+i);
        for(int i=1;i<=n;++i){
            scanf("%lld",v+i);
            sum[i]=sum[i-1]+v[i];
        }
        cout<<dp(n)<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值