HDU 1048 Fire Net

本文介绍了一种名为FireNet的城市布局算法,旨在计算特定城市地图上最多可放置多少个互不影响的防御碉堡。该算法通过深度优先搜索来找出最优解,并考虑了街道和墙壁对布局的影响。

Fire Net
Time Limit : 2000/1000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 4 Accepted Submission(s) : 2
Problem Description
Suppose that we have a square city with straight streets. A map of a city is a square board with n rows and n columns, each representing a street or a piece of wall.

A blockhouse is a small castle that has four openings through which to shoot. The four openings are facing North, East, South, and West, respectively. There will be one machine gun shooting through each opening.

Here we assume that a bullet is so powerful that it can run across any distance and destroy a blockhouse on its way. On the other hand, a wall is so strongly built that can stop the bullets.

The goal is to place as many blockhouses in a city as possible so that no two can destroy each other. A configuration of blockhouses is legal provided that no two blockhouses are on the same horizontal row or vertical column in a map unless there is at least one wall separating them. In this problem we will consider small square cities (at most 4x4) that contain walls through which bullets cannot run through.

The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of blockhouses in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.

Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.

Input
The input file contains one or more map descriptions, followed by a line containing the number 0 that signals the end of the file. Each map description begins with a line containing a positive integer n that is the size of the city; n will be at most 4. The next n lines each describe one row of the map, with a ‘.’ indicating an open space and an uppercase ‘X’ indicating a wall. There are no spaces in the input file.

Output
For each test case, output one line containing the maximum number of blockhouses that can be placed in the city in a legal configuration.

Sample Input

4
.X..
….
XX..
….
2
XX
.X
3
.X.
X.X
.X.
3

.XX
.XX
4
….
….
….
….
0

Sample Output

5
1
5
2
4


题目不给数据规模浑身不舒服…..
dfs水了一下 没想到这题那么水

#include<iostream>
#include<stdlib.h>
#include<stdio.h>
#include<string>
#include<vector>
#include<deque>
#include<queue>
#include<algorithm>
#include<set>
#include<map>
#include<stack>
#include<time.h>
#include<math.h>
#include<list>
#include<cstring>
//#include<memory.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define pii pair<int,int>
#define INF 1000000007
#define pll pair<ll,ll>
#define pid pair<int,double>

#define sci(a) scanf("%d",&a)
#define scll(a) scanf("%lld",&a)
#define scd(a) scanf("%lf",&a)
#define scs(a) scanf("%s",a)
#define pri(a) printf("%d\n",a)
#define prll(a) printf("%lld\n",a)
#define prd4(a) printf("%.4lf\n",a)
#define prd(a) printf("%lf\n",a)
#define prs(a) printf("%s\n",a)
//#define CHECK_TIME

const int maxn=10000;

char mp[maxn][maxn];

bool check(int r,int c,int n){//检测能否在(r,c)放一个碉堡
    for(int i=1;c+i<n;++i)
        if(mp[r][c+i]=='X')
            break;
        else
            if(mp[r][c+i]=='B')
                return false;
    for(int i=1;c-i>=0;++i)
        if(mp[r][c-i]=='X')
            break;
        else
            if(mp[r][c-i]=='B')
                return false;
    for(int i=1;r+i<n;++i)
        if(mp[r+i][c]=='X')
            break;
        else
            if(mp[r+i][c]=='B')
                return false;
    for(int i=1;r-i>=0;++i)
        if(mp[r-i][c]=='X')
            break;
        else
            if(mp[r-i][c]=='B')
                return false;
    return true;
}

int dfs(int r,int c,int n){
    if(c==n)
        return dfs(r+1,0,n);
    if(r==n)
        return 0;
    int res=0;
    res=dfs(r,c+1,n);//(r,c)不放碉堡
    if(mp[r][c]=='.'&&check(r,c,n)){
        mp[r][c]='B';
        res=max(res,dfs(r,c+1,n)+1);//(r,c)放碉堡
        mp[r][c]='.';
    }
    return res;
}

int main()
{
    //freopen("/home/lu/文档/r.txt","r",stdin);
    //freopen("/home/lu/文档/w.txt","w",stdout);
#ifdef CHECK_TIME
    time_t now=clock();
#endif

    int n;
    while(sci(n),n){
        for(int i=0;i<n;++i)
            scs(mp[i]);
        pri(dfs(0,0,n));
    }

#ifdef CHECK_TIME
    cout<<"cost time:"
       <<(double)(clock()-now)/CLOCKS_PER_SEC*1000
      <<"ms"<<endl;
#endif
    return 0;
}
基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值