1、问题描述:
使用将5个弱学习器结合起来的强学习器,实现对DDos攻击的识别。
# coding=utf8
import pandas as pd #导入pandas包
import numpy as np
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.model_selection import StratifiedKFold
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.datasets.samples_generator import make_blobs
from sklearn import metrics
from sklearn.preprocessing import LabelEncoder
'''创建数据集'''
# X为样本特征矩阵,行数为样本数(n_samples),列数为特征数目(n_features默认2), ;Y为对应的标签值,center为2表示Y取值为0,1两类。
# 导入数据集
data = pd.read_csv("E:/电科/CIC-IDS-2017/MachineLearningCVE/trainddos_0910.csv",low_memory=False) #读取csv文件
print(data)
# 特征集处理
# def harmonize_data(data):
# # 填充空数据 和 把string数据转成