思路
高斯消元
题意:在nnn维的球形空间中给定n+1n+1n+1个点,求到所有n+1n+1n+1个点的距离相等的点的坐标
由题意易知我们要求出在nnn维空间中的一个点(x1,x2,x3,…xn)(x_1,x_2,x_3,…x_n)(x1,x2,x3,…xn),满足:
∀i∈[1,n+1],∑j=1n(ai,j−xj)2=R\forall i\in[1,n+ 1],\sum\limits_{j = 1}^{n}(a_{i,j} - x_j)^2 = R∀i∈[1,n+1],j=1∑n(ai,j−xj)2=R
其中RRR是一个常数,第iii个点的坐标为(ai,1,ai,2,ai,3,…ai,n)(a_{i,1},a_{i,2},a_{i,3},…a_{i,n})(ai,1,ai,2,ai,3,…ai,n)
假设有i1,i2∈[1,n+1],i1≠i2i_1,i2\in[1,n+1],i1≠i2i1,i2∈[1,n+1],i1=i2,由∑j=1n(ai1,j−xj)2=R\sum\limits_{j = 1}^{n}(a_{i_1,j} - x_j)^2 = Rj=1∑n(ai1,j−xj)2=R和∑j=1n(ai2,j−xj)2=R\sum\limits_{j = 1}^{n}(a_{i_2,j} - x_j)^2 = Rj=1∑n(ai2,j−xj)2=R得
∑j=1n(ai1,j−xj)2=∑j=1n(ai2,j−xj)2\sum\limits_{j = 1}^{n}(a_{i_1,j} - x_j)^2 = \sum\limits_{j = 1}^{n}(a_{i_2,j} - x_j)^2j=1∑n(ai1,j−xj)2=j=1∑n(ai2,j−xj)2
展开式子得
∑j=1n(ai1,j2+xj2−2∗(ai1,j∗xj))=∑j=1n(ai2,j2+xj2−2∗(ai2,j∗xj))\sum\limits_{j = 1}^{n}(a_{i_1,j}^2 + x_j^2 - 2 *(a_{i_1,j}* x_j))=\sum\limits_{j = 1}^{n}(a_{i_2,j}^2 + x_j^2 - 2 *(a_{i_2,j}* x_j))j=1∑n(ai1,j2+xj2−2∗(ai1,j∗xj))=j=1∑n(ai2,j2+xj2−2∗(ai2,j∗xj))
进一步化简
∑j=1n(ai1,j2−2∗(ai1,j∗xj))=∑j=1n(ai2,j2−2∗(ai2,j∗xj))\sum\limits_{j = 1}^{n}(a_{i_1,j}^2 - 2 *(a_{i_1,j}* x_j))=\sum\limits_{j = 1}^{n}(a_{i_2,j}^2 - 2 *(a_{i_2,j}* x_j))j=1∑n(ai1,j2−2∗(ai1,j∗xj))=j=1∑n(ai2,j2−2∗(ai2,j∗xj))
∑j=1n2∗(ai1,j−ai2,j)xj=∑j=1n(ai1,j2−ai2,j2)\sum\limits_{j = 1}^{n} 2 *(a_{i_1,j} - a_{i_2,j})x_j= \sum\limits_{j = 1}^{n}(a_{i_1,j}^2 - a_{i_2,j}^2)j=1∑n2∗(ai1,j−ai2,j)xj=j=1∑n(ai1,j2−ai2,j2)
这样就转化成了一个线性方程组,由此可以用每个iii和i+1i+1i+1两两组合,得出nnn个线性方程组,则最后的矩阵为
[2(a1,1−a2,1) 2(a1,2−a2,2) …2(a1,n−a2,n)∑j=1n(a1,j2−a2,j2)2(a2,1−a3,1) 2(a2,2−a3,2) …2(a2,n−a3,n)∑j=1n(a2,j2−a3,j2)2(a3,1−a4,1) 2(a3,2−a4,2) …2(a3,n−a4,n)∑j=1n(a3,j2−a4,j2)…2(an,1−an+1,1) 2(an,2−an+1,2) …2(an,n−an+1,n)∑j=1n(an,j2−an+1,j2)]\begin{bmatrix}2(a_{1,1}-a_{2,1})\ 2(a_{1,2}-a_{2,2})\ … 2(a_{1,n}-a_{2,n})\sum\limits_{j=1}^{n}(a^2_{1,j}-a^2_{2,j})\\2(a_{2,1}-a_{3,1})\ 2(a_{2,2}-a_{3,2})\ … 2(a_{2,n}-a_{3,n})\sum\limits_{j=1}^{n}(a^2_{2,j}-a^2_{3,j})\\2(a_{3,1}-a_{4,1})\ 2(a_{3,2}-a_{4,2})\ … 2(a_{3,n}-a_{4,n})\sum\limits_{j=1}^{n}(a^2_{3,j}-a^2_{4,j})\\…\\2(a_{n,1}-a_{n+1,1})\ 2(a_{n,2}-a_{n+1,2})\ … 2(a_{n,n}-a_{n+1,n})\sum\limits_{j=1}^{n}(a^2_{n,j}-a^2_{n+1,j})\end{bmatrix}⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡2(a1,1−a2,1) 2(a1,2−a2,2) …2(a1,n−a2,n)j=1∑n(a1,j2−a2,j2)2(a2,1−a3,1) 2(a2,2−a3,2) …2(a2,n−a3,n)j=1∑n(a2,j2−a3,j2)2(a3,1−a4,1) 2(a3,2−a4,2) …2(a3,n−a4,n)j=1∑n(a3,j2−a4,j2)…2(an,1−an+1,1) 2(an,2−an+1,2) …2(an,n−an+1,n)j=1∑n(an,j2−an+1,j2)⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤
对此矩阵进行高斯消元求解即可,由于保证有解,所以直接做就好了
代码
/*
Author:loceaner
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define eps 1e-8
using namespace std;
const int A = 22;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar(); int x = 0, f = 1;
for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int n;
double a[A][A], G[A][A], b[A];
//a是输入的点坐标,G是矩阵序数数组,b是方程右边的常数
int main() {
n = read();
for (int i = 1; i <= n + 1; i++)
for (int j = 1; j <= n; j++) scanf("%lf", &a[i][j]);
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
G[i][j] = 2 * (a[i][j] - a[i + 1][j]);
b[i] = b[i] + a[i][j] * a[i][j] - a[i + 1][j] * a[i + 1][j];
}
for (int i = 1; i <= n; i++) {
for (int j = i; j <= n; j++) {
if (fabs(G[i][j]) > eps) {
for (int k = 1; k <= n; k++) swap(G[i][k], G[j][k]);
swap(b[i], b[j]);
}
}
for (int j = 1; j <= n; j++) {
if (i == j) continue;
double tmp = G[j][i] / G[i][i];
for (int k = i; k <= n; k++) G[j][k] -= G[i][k] * tmp;
b[j] -= b[i] * tmp;
}
}
for (int i = 1; i <= n; i++) printf("%.3lf ", b[i] / G[i][i]);
return 0;
}