How many integers can you find
Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10302 Accepted Submission(s): 3078
Problem Description
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
Input
There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
Output
For each case, output the number.
Sample Input
12 2 2 3
Sample Output
7
Author
wangye
题意:
给定数n和有m个数的集合
问1-n中有多少数能被集合里的某个数整除
思路:
直接进行容斥有10层会T,要进行二进制优化,即用数的二进制来表示数组里取的和没取的数,再根据取数个数的奇偶来判断是要加还是减
注意要在输入数时要把0去掉...
#include <bits/stdc++.h>
using namespace std;
#define ll long long
ll n;
int m;
int num[20];
int main()
{
while(scanf("%lld%d",&n,&m)!=EOF)
{
n--;
int pl=0;
for(int i=1;i<=m;i++)
{
scanf("%d",&num[pl]);
if(num[pl])
pl++;
}
ll ans=0;
for(int i=1;i<(1<<pl);i++)
{
int cnt=0;
ll sum=1;
for(int j=0;j<pl;j++)
{
if(i&(1<<j))
{
cnt++;
sum=(num[j]/__gcd(sum,(ll)num[j])*sum);
}
}
if(cnt&1)
ans+=n/sum;
else
ans-=n/sum;
}
printf("%lld\n",ans);
}
}