codeforces The Meeting Place Cannot Be Changed

本文介绍了一个有趣的问题:如何计算让所有人在一条直线上最短时间内相遇的最小时间。通过使用浮点数二分法,确定了一个点能到达的有效区间,并逐步缩小这个区间直到找到最佳相遇时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The main road in Bytecity is a straight line from south to north. Conveniently, there are coordinates measured in meters from the southernmost building in north direction.

At some points on the road there are n friends, and i-th of them is standing at the point xi meters and can move with any speed no greater than vi meters per second in any of the two directions along the road: south or north.

You are to compute the minimum time needed to gather all the n friends at some point on the road. Note that the point they meet at doesn’t need to have integer coordinate.

Input
The first line contains single integer n (2 ≤ n ≤ 60 000) — the number of friends.

The second line contains n integers x1, x2, …, xn (1 ≤ xi ≤ 109) — the current coordinates of the friends, in meters.

The third line contains n integers v1, v2, …, vn (1 ≤ vi ≤ 109) — the maximum speeds of the friends, in meters per second.

Output
Print the minimum time (in seconds) needed for all the n friends to meet at some point on the road.

Your answer will be considered correct, if its absolute or relative error isn’t greater than 10 - 6. Formally, let your answer be a, while jury’s answer be b. Your answer will be considered correct if holds.

题意,给出n个点 和n个点的坐标 只能往上和往下走。要求。求得所有点最短的相遇时间。
浮点数的二分,一开始用整数的二分枚举了相遇地点,后来发现错了。只用用浮点枚举二分就行。

先求出一个点的所能达到的区间。然后用别的点来收缩此区间。例如一个点往下走只能走到 z,如果z比l小,那么限制条件l应该变为z。同理。

#include <bits/stdc++.h>
using namespace std;
int a[101010];
int p[101010];
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++) cin>>a[i];
    for(int i=1;i<=n;i++) cin>>p[i];
        double l=0,r=1000000000.1;
        double mid;
    int flag;
    while(r-l>1e-8)
    {
        flag=0;
         mid=(l+r)/2;
        double L=a[1]-p[1]*mid;
        double R=a[1]+p[1]*mid;
        for(int i=2;i<=n;i++)
        {
            L=max(L,a[i]-p[i]*mid);
            R=min(R,a[i]+p[i]*mid);
            if(L>R)
            {
                flag=1;
                break;
            }
        }
        if(flag)
        {
            l=mid;
        } 
        else
            r=mid;
    }
    printf("%.10lf\n",mid );
}
关于Codeforces上的问题'Trail',目前提供的参考资料中并未直接提及该问题的具体解法或讨论[^1]。然而,在处理类似平台上的编程挑战时,通常会遵循特定的方法论来解决问题。 对于未具体描述的问题'Trail',假设这是一个涉及路径遍历或是图结构中的轨迹计算等问题,一般解决方案可能涉及到深度优先搜索(DFS)、广度优先搜索(BFS)或者是动态规划等技术。这些方法能够有效地探索所有可能性并找到最优解。 考虑到Codeforces平台上许多问题的特点,解决这类题目往往还需要注意边界条件以及输入数据范围的影响。编写代码前应仔细阅读题目说明,确保理解所有的约束条件和特殊案例。 下面是一个简单的Python实现例子,用于展示如何通过深度优先搜索算法在一个假定的网格环境中寻找从起点到终点的有效路径: ```python def dfs(grid, start, end): rows, cols = len(grid), len(grid[0]) visited = set() def explore(r, c): if (r < 0 or r >= rows or c < 0 or c >= cols or grid[r][c] == '#' or (r,c) in visited): return False if (r, c) == end: return True visited.add((r, c)) directions = [(0, 1), (1, 0), (-1, 0), (0, -1)] for dr, dc in directions: next_r, next_c = r + dr, c + dc if explore(next_r, next_c): return True return False return explore(*start) # Example usage with a simple maze represented as a list of strings. maze = [ '..#.##', '#...#.', '#####.' ] print(dfs(maze, (0, 0), (2, 5))) # Output should be True based on this example layout. ``` 此段代码展示了利用递归方式执行深度优先搜索的过程,适用于某些类型的‘Trail’类问题。当然实际应用中还需根据具体的题目要求调整逻辑细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值