ts10_Univariate TS模型_circle mark pAcf_ETS_unpack product_darts_bokeh band interval_ljungbox_AIC_BIC : ts10_Univariate TS模型_circle mark pAcf_ETS_unpack product_darts_bokeh band interval_ljungbox_AIC_BIC_LIQING LIN的博客-优快云博客
Forecasting univariate time series data with seasonal ARIMA
In this recipe, you will be introduced to an enhancement to the ARIMA model for handling seasonality, known as the Seasonal Autoregressive Integ
使用SARIMA预测季节性时间序列
本文介绍了如何利用SARIMA模型处理具有季节性的单变量时间序列数据。通过ACF和pACF确定ARMA模型和季节性周期,然后进行季节性分解。根据ACF和PACF图选择SARIMA模型参数,如ARIMA(0, 1, 1)(0, 1, 1, 12),并进行模型诊断,比较预测与实际数据,以展示模型的准确性。"
131241764,18870641,Python空行:提升代码可读性和可维护性的关键,"['Python', '编程规范', '代码可读性', '代码组织', '软件维护']
订阅专栏 解锁全文
1813

被折叠的 条评论
为什么被折叠?



