存储与排序:双查询自适应位探针方案与 V - 序的应用
1. 双查询自适应位探针方案
在数据存储领域,有一种双查询自适应位探针方案备受关注,它能够存储来自大小为 m 的全域中最多包含五个元素的任意子集。该方案的核心在于合理地将元素分配到不同的表中。
具体来说,对于元素的分配有不同的情况:
- 情况 3.3.3 中,如果包含来自集合 S2 元素的块与包含来自集合 S1 元素的块都不重合,这种情况与情况 3.1.3 相同。
- 元素分配时,会将包含元素 n4 的块发送到表 T1,将包含元素 n5 的块发送到表 T0,其余所有空块则发送到表 T1。
该方案的正确性基于两个关键事实:
- 在表 T1 或表 T0 中,包含元素的块不会重合。
- 不包含元素的块不会被发送到包含元素的块所在的位置。
总结来说,存在一种双探针显式自适应方案,它可以存储来自大小为 m 的全域中最多包含五个元素的任意子集,并且仅使用 $O(m^{10/11})$ 位的空间。
2. V - 序的基础概念
V - 序是一种对字符串的全序关系,它决定了唯一最大因式分解族(UMFFs)的一个实例,是 Lyndon 单词的一种推广。下面我们详细介绍 V - 序相关的基础概念。
2.1 字母表与字符串
我们有一个有限的全序集,其基数为 $\sigma = |\Sigma|$,这个集合被称为字母表,其中的元素是字符(也可以称为字母)。字符串是由字母表 $\Sigma$ 中的零个或多个字符组成的序列。长度为 $|x| = n$ 的字符串 $x = x_1x_2 \cdots x_n$
超级会员免费看
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



