极限存在准则
准则 I I I
如果数列 { x n } , { x b } \lbrace x_n \rbrace , \{ x_b \} {xn},{xb} 及 { z n } \{ z_n \} {zn} 满足下列条件:
(1)从某项起, 即
∃
\exist
∃
n
0
n_0
n0
∈
\in
∈
N
+
N_+
N+ , 当
n
>
n
0
n > n_0
n>n0 时,有
y
n
y_n
yn
≤
\leq
≤
x
n
x_n
xn
≤
\leq
≤
z
n
z_n
zn
(2) lim n → ∞ y n = a \lim_{n\rightarrow\infty} y_n = a limn→∞yn=a, lim n → ∞ z n = a \lim_{n\rightarrow\infty}z_n = a limn→∞zn=a
那么数列 { x n } \lbrace x_n \rbrace {xn} 的极限存在, 且 lim n → ∞ x n = a \lim_{n\rightarrow\infty} x_n = a limn→∞xn=a
准则 I ’ I^’ I’
如果
(1)当
x
x
x
∈
\in
∈
U
0
(
x
0
,
r
)
U^0 ( x_0, r)
U0(x0,r) 或(
∣
x
∣
\lvert x \lvert
∣x∣ >
M
M
M) 时,
g
(
x
)
g(x)
g(x)
≤
\leq
≤
f
(
x
)
f(x)
f(x)
≤
\leq
≤
h
(
x
)
h(x)
h(x)
(2) lim x → x 0 ( x → ∞ ) \displaystyle \lim_{x \to x_0}^{(x\rightarrow\infty)} x→x0lim(x→∞) g ( x ) = A g(x) = A g(x)=A, lim x → x 0 ( x → ∞ ) \displaystyle \lim_{x \to x_0}^{(x\rightarrow\infty)} x→x0lim(x→∞) h ( x ) = A h(x) = A h(x)=A
那么 lim x → x 0 ( x → ∞ ) \displaystyle \lim_{x \to x_0}^{(x\rightarrow\infty)} x→x0lim(x→∞) g ( x ) = A g(x) = A g(x)=A 存在, 且等于 A A A
准则 I I I 与 准则 I ’ I^’ I’ 称为 夹逼准则。
准则 I I II II
单调有界数列必有极限
两个重要极限
lim x → ∞ \displaystyle \lim_{x \to\infty} x→∞lim ( 1 + 1 x ) x = e (1+\frac{1}{x})^x = e (1+x1)x=e
lim x → 0 \displaystyle \lim_{x \to 0} x→0lim ( 1 + x ) 1 x = e (1+x)^\frac{1}{x} = e (1+x)x1=e
lim x → ∞ \displaystyle \lim_{x \to\infty} x→∞lim ( 1 − 1 x ) x = 1 e (1-\frac{1}{x})^x = \frac{1}{e} (1−x1)x=e1