题目传送门: http://codeforces.com/contest/706/problem/C
题意: 先给n个数代表倒置字符串所耗能量,再给n个字符串,有先后顺序。字符串只能被倒置,不能被替换。输出使n个字符串成功按照字典序排列所需最低能量,如果无法实现输出-1
思路:这题就是一道简单的二维dp。第二维有两种状态,0代表不倒置,1代表倒置
状态转移方程:
if(str[i] >= str[i-1]) dp[i][0] = min(dp[i][0],dp[i-1][0]);
if(str[i] >= str1[i-1]) dp[i][0] = min(dp[i][0],dp[i-1][1]);
if(str1[i] >= str[i-1]) dp[i][1] = min(dp[i][1],dp[i-1][0] + c[i]);
if(str1[i] >= str1[i-1]) dp[i][1] = min(dp[i][1],dp[i-1][1] + c[i]);
很简单的一道题做了半天。。还是我太vegetable了
代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <stdio.h>
#include <string>
#include <cmath>
#include <queue>
#include <set>
#include <map>
#include <stack>
#include <bitset>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define ll long long
#define ull unsigned long long
#define mem(n,v) memset(n,v,sizeof(n))
#define MAX 100005
#define MAXN 200005
#define PI 3.1415926
#define E 2.718281828459
#define opnin freopen("text.in.txt","r",stdin)
#define opnout freopen("text.out.txt","w",stdout)
#define clsin fclose(stdin)
#define clsout fclose(stdout)
#define haha1 cout << "haha1"<< endl
#define haha2 cout << "haha2"<< endl
#define haha3 cout << "haha3"<< endl
const int INF = 0x3f3f3f3f;
const ll INFF = 0x3f3f3f3f3f3f3f3f;
const double pi = 3.141592653589793;
const double inf = 1e18;
const double eps = 1e-8;
const ll mod = 1e9+7;
const ull mx = 133333331;
/**************************************************************************/
int n;
ll c[MAX];
string str[MAX];
string str1[MAX];
ll dp[MAX][2];
int main()
{
mem(c,0);
cin >> n;
for(int i=1;i<=n;i++){
dp[i][0] = dp[i][1] = INFF;
}
for(int i=1;i<=n;i++) scanf("%I64d",&c[i]);
for(int i=1;i<=n;i++){
cin >> str[i];
str1[i] = str[i];
reverse(str1[i].begin(),str1[i].end());
}
dp[1][0] = 0;
dp[1][1] = c[1];
for(int i=2;i<=n;i++){
if(str[i] >= str[i-1]) dp[i][0] = min(dp[i][0],dp[i-1][0]);
if(str[i] >= str1[i-1]) dp[i][0] = min(dp[i][0],dp[i-1][1]);
if(str1[i] >= str[i-1]) dp[i][1] = min(dp[i][1],dp[i-1][0] + c[i]);
if(str1[i] >= str1[i-1]) dp[i][1] = min(dp[i][1],dp[i-1][1] + c[i]);
ll Min = dp[n][0];
Min = min(Min,dp[n][1]);
if(Min == INFF) cout << "-1" <<endl;
else cout << Min << endl;
}