Let ∇f(x)=2ATAx−2ATb=0, then x=(ATA)−1ATb
(ATA)−1AT is Moore-Penrose Pseudoinverse.
SVD(Singular value decomposition)
A=UΣVT,A∈Rm×n,U∈Rm×r,Σ∈Rr×r,VT∈Rr×n,r=rank(A)
U is orthogonal basis of
Ainv=VΣ−1UT
Least Square Solution x=Ainvb
col(A): subspace speened by colS of A,
Projection: PA=UUT,U=[u1,u2,⋯,un], ui is column vector.
Projector: P2=P (特征向量只有1和0)
uTi is a basis vector in colA.
uTi(I−PA)b=(uTi−uTiUUT)b=0
UUTb=Ax=AAinvb
min∥Ax−b∥22+r∥x∥22
- Solution: Ax^=A(ATA+λI)−1ATb=∑nj=1ujσ2jσ2j+λuTjb
- Definition: Convex cone C:x,y∈C,ax+by∈C,a,b≥0
Semidefinite cone
T: affine transform Rn→Rd, [Rd×n][Rn]=[Rd]
Dual norm: ∥z∥∗=max{zTx∣∥x∥≤1}
polar set of Q:
(unit norm ball of ∥⋅∥)Δ = (unit norm ball of ∥⋅∥∗)
Quadratic norm: ∥z∥p=(zTPz)12=∥p12z∥,p∈Sn++
Lp-norm: (∑i∣xi∣p)1p,p≥1
Dual Lp-norm: 1p+1q=1