torch-sparse安装问题

部署运行你感兴趣的模型镜像

无论怎么修改环境变量就是搞不成,简单粗暴点,直接在终端输入以下命令,使用临时变量,路径即cuda的安装路径

export CUDA_HOME=/usr/local/cuda-10.0

torch-sparse、torch_geometric、torch_scatter、torch_cluster等版本问题参考的这位老哥的博客

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### 安装 PyG-Lib 及其依赖项 为了成功安装 PyG-Lib (PyTorch Geometric) 和其依赖项 `torch-scatter`, `torch-sparse`, `torch-cluster`, `torch-spline-conv` 以及 `torch-geometric`,建议遵循官方推荐的方法来确保兼容性和稳定性。 对于特定版本的 PyTorch 和 CUDA,可以使用如下命令进行安装: ```bash pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f https://data.pyg.org/whl/torch-{version}+cu{version}.html[^1] ``` 这里 `{version}` 需要替换为实际使用的 PyTorch 版本号和 CUDA 版本号。例如,如果使用的是 PyTorch 1.12.0 和 CUDA 11.3,则 URL 应该设置为 `https://data.pyg.org/whl/torch-1.12.0+cu113.html`. 需要注意的是,在某些情况下最新版的 PyTorch 或者 PyTorch Geometric 可能尚未完全适配所有环境配置[^2]。因此,当遇到安装问题时,可以选择指定较低版本的 PyTorch 来保证兼容性。比如通过 Conda 安装特定版本的 PyTorch: ```bash conda install pytorch=1.10 torchvision torchaudio cudatoolkit=10.2 -c pytorch ``` 另外一种方式是单独依次安装各个依赖库,并明确指明它们所基于的 PyTorch 和 CUDA 的具体版本: ```bash pip install torch_scatter -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_sparse -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_cluster -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_spline_conv -f https://pytorch-geometric.com/whl/torch-1.12.0%2Bcu113.html pip install torch_geometric[^3] ``` 此过程可能会比较耗时,请保持耐心等待完成。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值