题目描述:
Given an array of integers A
and let n to be its length.
Assume Bk
to be an array obtained by rotating the array A
k positions clock-wise, we define a "rotation function" F
on A
as follow:
F(k) = 0 * Bk[0] + 1 * Bk[1] + ... + (n-1) * Bk[n-1]
.
Calculate the maximum value of F(0), F(1), ..., F(n-1)
.
Note:
n is guaranteed to be less than 105.
Example:
A = [4, 3, 2, 6]
F(0) = (0 * 4) + (1 * 3) + (2 * 2) + (3 * 6) = 0 + 3 + 4 + 18 = 25
F(1) = (0 * 6) + (1 * 4) + (2 * 3) + (3 * 2) = 0 + 4 + 6 + 6 = 16
F(2) = (0 * 2) + (1 * 6) + (2 * 4) + (3 * 3) = 0 + 6 + 8 + 9 = 23
F(3) = (0 * 3) + (1 * 2) + (2 * 6) + (3 * 4) = 0 + 2 + 12 + 12 = 26
So the maximum value of F(0), F(1), F(2), F(3) is F(3) = 26.
这道题自然是不能直接求n个可能的解,这样时间复杂度太高。其实F(k)可以由F(k-1)得到,即F(k)=F(k-1)-(n-1)*A[n-k]+(sum-A[n-k]),sum为数组所有元素之和。
class Solution {
public:
int maxRotateFunction(vector<int>& A) {
int n=A.size();
if(n==0) return 0;
int sum=0;
int cur=0;
for(int i=0;i<n;i++)
{
cur+=i*A[i];
sum+=A[i];
}
int max_sum=cur;
for(int i=1;i<n;i++)
{
cur=cur-n*A[n-i]+sum;
max_sum=max(max_sum,cur);
}
return max_sum;
}
};