Description:
Given an array with n integers, your task is to check if it could become non-decreasing by modifying at most 1 element.
We define an array is non-decreasing if array[i] <= array[i + 1] holds for every i (1 <= i < n).
Example 1:
Input: [4,2,3]
Output: True
Explanation: You could modify the first
4
to
1
to get a non-decreasing array.
Example 2:
Input: [4,2,1]
Output: False
Explanation: You can't get a non-decreasing array by modify at most one element.
Note: The n belongs to [1, 10,000].
Solution:
//可以这样理解,在a[i]之前为一条递增的直线,a[i]这里突然下降了,那么为了消除这个下降就有两个选择,一个是忽略掉a[i],还是以原来的直线递增,一个是忽略掉a[i-1],相当于直线朝a[i]折了一下,然后继续判断,如果下次有点下降,那么返回false。那么如何做出选择呢?如果a[i] < a[i - 1]&&a[i] < a[i - 2],那么忽略a[i](因为若忽略a[i-1],直线扔有下降部分),如果a[i]<a[i - 1]&&a[i]>=a[i - 2],那么忽略a[i - 1](因为若忽略a[i],那么不能最大限度的使后续的点满足递增)
class Solution {
public boolean checkPossibility(int[] a) {
int modified = 0;
for (int i = 1, prev = a[0]; i < a.length; i++) {
if (a[i] < prev) {
if (modified++ > 0) return false;
if (i - 2 >= 0 && a[i - 2] > a[i]) continue;
}
prev = a[i];
}
return true;
}
}