LangChain 非常强大的一点就是封装了非常多强大的工具可以直接使用。降低了使用者的学习成本。比如数据网页爬取。
在其官方文档-网页爬取中,也有非常好的示例。
应用场景
- 信息爬取。
- RAG 信息检索。
实践应用
需求说明
- 从 ceshiren 网站中获取每个帖子的名称以及其对应的url信息。
- ceshiren论坛地址:https://ceshiren.com/
实现思路

对应源码
# 定义大模型
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613")
# 定义提取方法
def extract(content: str, schema: dict):
from langchain.chains import create_extraction_chain
return create_extraction_chain(schema=schema, llm=llm).invoke(content)
import pprint
from langchain_text_splitters import RecursiveCharacterTextSplitter
def scrape_with_playwright(urls, schema):
# 加载数据
loader = AsyncChromiumLoader(urls)
docs = loader.load()
# 数据转换
bs_transformer = BeautifulSoupTransformer()
# 提取其中的span标签
docs_transformed = bs_transformer.transform_documents(
docs, tags_to_extract=["span"]
)
# 数据切分
splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=1000, chunk_overlap=0)
splits = splitter.split_documents(docs_transformed)
# 因为数据量太大,输入第一片数据使用,传入使用的架构
extracted_content = extract(schema=schema, content=splits[0].page_content)
pprint.pprint(extracted_content)
return extracted_content
urls = ["https://ceshiren.com/"]
schema = {
"properties": {
"title": {"type": "string"},
"url": {"type": "string"},
},
"required": ["title", "url"],
}
extracted_content = scrape_with_playwright(urls, schema=schema)
PYTHON 复制 全屏
总结
- 了解网页爬取的实现思路以及相关技术。
- 通过LangChain实现爬取测试人网页的标题和url。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

三、LLM大模型系列视频教程

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

3630

被折叠的 条评论
为什么被折叠?



