什么是prompts
在大语言模型(LLM)中,Prompt指的是模型生成内容时所需要的输入,它可以包含模型生成内容时所需要的背景知识、用户期望模型执行的指令、模型输出需要遵循的格式等。
为什么要用prompts
在我们平常使用大语言模型进行问答时,他回答的内容往往就是他默认的回答格式首先,然后,最后这种,例如想要让大语言模型回答时在开头添加固定开场白,或是结尾添加固定结束词,又或是让他只回答某一方面的问题,跟这个方面不相关的问题不回答等效果,就需要使用prompts
来提示或者限制大语言模型的回答内容,特定的回答风格,或者是将大模型水平范围回答限制到垂直范围(回答内容准确性可能不高,高准确性使用外挂数据库更好).
提示词的组成
从图中可以看出,提示词主要由一个任务描述,一个输入文本,输出指示组成.他们会一同发送给大语言模型,而大语言模型就会根据提示词进行回答.
提示词公式=角色+角色技能+任务关键词+任务目标+任务背景+任务范围+任务结果判定+限制条件+输出格式+输出量
langchian中的提示词
langchian提供了几个提示词模板,可以自定义提示词模板
python
复制代码
from langchain.prompts import (
ChatPromptTemplate,
PromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
用聊天消息作为输入,每条消息都与一个角色有关,是一个消息列表。
SystemMessagePromptTemplate
, AIMessagePromptTemplate
, HumanMessagePromptTemplate
是分别用于创建不同角色提示词的模板。
LangChain提供了几个对象,区分不同角色
HumanMessage
:来自人类/用户的ChatMessage
AIMessage
:来自AI/助手的ChatMessage
SystemMessage
:来自系统的ChatMessage
FunctionMessage
:来自函数调用的ChatMessage
可以使用ChatMessage
类手动指定角色
有兴趣的可以查看官方文档的详细使用.
最简单的提示词示例
python
复制代码
import os
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
DASHSCOPE_API_KEY=os.environ["DASHSCOPE_API_KEY"]
from langchain_community.llms import Tongyi
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
llm=Tongyi(temperature=1)
template='''
你是一个不耐烦的老奶奶,非常不愿意回答问题,请你不耐烦的回答:{question}
'''
prompt=PromptTemplate(
template=template,
input_variables=["question"]
)
chain = LLMChain(
llm=llm,
prompt=prompt
)
question='什么是人工智能?'
res=chain.invoke(question)
print("无prompt--->\n",llm.invoke(question),"\n")
print("有prompt--->\n",res['text'])
这里使用的是阿里云的通义千问,还不会的可以看上一篇
传送门:langchain入门一:python+langchain+通义千问,白嫖qwen大模型实现自己的聊天机器人 - 掘金 (juejin.cn)
看看效果:
修改一下prompt的内容
python
复制代码
template='''
你是一个温柔的成熟姐姐,回答问题就会感到愉快并发出呵呵呵的笑声,你会温柔的回答:{question}
'''
看看效果:
总结
prompt是一个对大语言模型回答进行提示或是限制的主要内容,提示词对大语言模型的作用力度与大语言模型的智慧程度有关,程度越高,提示词的效果就会越好
如何系统的去学习大模型LLM ?
作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料
包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
阶段1:AI大模型时代的基础理解
- 目标:了解AI大模型的基本概念、发展历程和核心原理。
- 内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践 - L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
- 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
- 内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例 - L2.2 Prompt框架
- L2.2.1 什么是Prompt
- L2.2.2 Prompt框架应用现状
- L2.2.3 基于GPTAS的Prompt框架
- L2.2.4 Prompt框架与Thought
- L2.2.5 Prompt框架与提示词 - L2.3 流水线工程
- L2.3.1 流水线工程的概念
- L2.3.2 流水线工程的优点
- L2.3.3 流水线工程的应用 - L2.4 总结与展望
- L2.1 API接口
阶段3:AI大模型应用架构实践
- 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
- 内容:
- L3.1 Agent模型框架
- L3.1.1 Agent模型框架的设计理念
- L3.1.2 Agent模型框架的核心组件
- L3.1.3 Agent模型框架的实现细节 - L3.2 MetaGPT
- L3.2.1 MetaGPT的基本概念
- L3.2.2 MetaGPT的工作原理
- L3.2.3 MetaGPT的应用场景 - L3.3 ChatGLM
- L3.3.1 ChatGLM的特点
- L3.3.2 ChatGLM的开发环境
- L3.3.3 ChatGLM的使用示例 - L3.4 LLAMA
- L3.4.1 LLAMA的特点
- L3.4.2 LLAMA的开发环境
- L3.4.3 LLAMA的使用示例 - L3.5 其他大模型介绍
- L3.1 Agent模型框架
阶段4:AI大模型私有化部署
- 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
- 内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
学习计划:
- 阶段1:1-2个月,建立AI大模型的基础知识体系。
- 阶段2:2-3个月,专注于API应用开发能力的提升。
- 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
- 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传优快云,朋友们如果需要可以微信扫描下方优快云官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓