OpenCV实战(15)——轮廓检测详解

本文深入探讨了计算机视觉中轮廓检测的重要性,详细介绍了如何使用OpenCV提取图像的轮廓,包括基本的轮廓提取、复杂轮廓分析。通过实例展示了如何计算区域形状描述符,如边界框、最小包围圆、多边形近似和凸包。同时,文章提到了四边形检测的应用,例如在检测图像中的窗户等形状。通过完整的代码示例,读者可以全面了解轮廓检测和形状分析的实践过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

在计算机视觉领域,轮廓通常指图像中对象边界的一系列点。因此,轮廓通常描述了对象边界的关键信息,包含了有关对象形状的主要信息,该信息可用于形状分析与对象检测和识别。本节中,我们首先介绍如何提取图像中轮廓,然后讲解如何计算轮廓的形状描述符。

1. 提取区域轮廓

1.1 轮廓提取

图像通常包含目标对象的表示,图像分析的目标之一是识别和提取这些对象。在目标检测/识别应用中,通常需要生成一个二值图像,显示目标物体的位置,提取包含在二值图像中的对象。例如,使用如下二值图像:

二值图像

我们可以通过简单的阈值操作获得此图像,然后应用开/闭形态滤波器。本节将介绍如何提取图像中的目标对象,更具体地说,我们将提取图像中的连接部分,即由二值图像中的一组连接像素组成的形状。OpenCV 提供了一个简单的函数来提取图像的连接部分的轮廓,即 cv::findContours 函数。

(1)

评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值