A-HDU - 1263
思路:观察题目,发现我们需要构造如下数据关联:产地与其所产多种水果品种的关联,某个产地的某种水果与其数量的关联。我们都可以使用 map 轻松实现:前者产地为键,存有该产地水果品种的 vector 为值;后者关联产地与品种的 pair 为键,该产地此品种水果的数量为值。另外需要维护一个 map 防止同一个产地的水果重复。我们只需要维护好这些 map 就能轻松模拟出结果。
#include <bits/stdc++.h>
#include <unordered_set>
#define endl '\n'
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define LL long long
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
int n, m;
map<string, vector<string>> mp;
map<pair<string, string>, int> vs;
map<pair<string, string>, bool> vsed;
int main()
{
IOS;
cin >> n;
while (n--)
{
mp.clear(), vs.clear(), vsed.clear();
cin >> m;
rep(i, 1, m)
{
string nam, ori;
int num;
cin >> nam >> ori >> num;
vs[{ori, nam}] += num;
if (vsed[{ori, nam}] == 0)
mp[ori].push_back(nam);
vsed[{ori, nam}] = 1;
}
for (auto &u : mp)
{
cout << u.first << endl;
sort(u.second.begin(), u.second.end());
for (auto &vec : u.second)
cout << " " << "|" << "----" << vec << "(" << vs[{u.first, vec}] << ")" << endl;
}
if (n != 0)
cout << endl;
}
return 0;
}
B-HDU - 1004
思路:模拟即可。
#include <bits/stdc++.h>
#include <unordered_set>
#define endl '\n'
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define LL long long
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
int n;
vector<string> s(1003);
map<string, int> vs;
int main()
{
while (cin >> n)
{
if (n == 0)
break;
vs.clear();
s.clear();
rep(i, 1, n)
{
cin >> s[i];
vs[s[i]]++;
}
int maxn = INT_MIN;
string maxs;
for (auto &u : vs)
{
if (u.second > maxn)
{
maxn = u.second;
maxs = u.first;
}
}
cout << maxs << endl;
}
return 0;
}
C-HDU - 2050
思路:观察发现,每多一个交点,分割区域就多一块,而每次增加第 n 个角时,每条新射线最多可以经过 2*(n-1) 个点,每个角有两条射线,两条射线之间又能增加一个区域,所以每增加第 n 个角时,区域增加 2*2*(n-1)+1 个,设 s[n] 为 n 个角的平面最大分割数,故能有如下递推关系:s[n]=s[n-1]+4*(n-1)+1。
#include <bits/stdc++.h>
#include <unordered_set>
#define endl '\n'
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define LL long long
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
int c;
int s[10004];
void init()
{
s[1] = 2;
rep(i,2,10000)
{
s[i] = s[i - 1] + 4 * (i - 1) + 1;
}
}
int main()
{
IOS;
cin >> c;
init();
while(c--)
{
int n;
cin >> n;
cout << s[n] << endl;
}
return 0;
}
D-HDU - 2051
思路:模拟十进制转二进制的过程即可。
#include <bits/stdc++.h>
#include <unordered_set>
#define endl '\n'
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define LL long long
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
int n;
int main()
{
while (cin >> n)
{
if (n == 0)
{
cout << 0 << endl;
continue;
}
vector<int> b;
while (n > 0)
{
b.push_back(n % 2);
n /= 2;
}
per(i, b.size() - 1, 0)
cout << b[i];
cout << endl;
}
return 0;
}
E-洛谷 - B3628
思路:贪心地思考,机器猫在闯关过程中可能损失的最多血量,将其加上 1 即为所求。利用前缀和来描述闯关过程中的血量增损。
#include <bits/stdc++.h>
#include <unordered_set>
#define endl '\n'
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define LL long long
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
int n;
int a[100005];
int s[100005];
int main()
{
IOS;
cin >> n;
rep(i, 1, n)
{
cin >> a[i];
s[i] = s[i - 1] + a[i];
}
int minn = INT_MAX;
rep(i, 1, n)
minn = min(minn, s[i]);
cout << -minn + 1;
return 0;
}
F-洛谷 - P1083
思路:将每个订单暴力模拟的方法显然会超时。观察发现,有问题的订单的位置关于能顺序完成的订单的个数似乎具有某种单调性,于是我们考虑对问题订单使用二分答案:条件函数 p(int mid) 就是在判断能否做 mid 个订单,只需利用差分模拟实现即可。
#include <bits/stdc++.h>
#include <unordered_set>
#define endl '\n'
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define LL long long
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
int n, m;
int r[1000006], d[1000006], s[1000006], t[1000006];
int dr[1000006];
bool p(int mid)
{
rep(i, 1, n)
dr[i] = r[i] - r[i - 1];
rep(i,1,mid)
dr[s[i]] -= d[i], dr[t[i] + 1] += d[i];
int tmsr = 0;
rep(i,1,n)
{
tmsr += dr[i];
if(tmsr<0)
return 1;
}
return 0;
}
int main()
{
cin >> n >> m;
rep(i,1,n)
{
cin >> r[i];
dr[i] = r[i] - r[i - 1];
}
rep(i,1,m)
cin >> d[i] >> s[i] >> t[i];
rep(i,1,m)
dr[s[i]] -= d[i], dr[t[i] + 1] += d[i];
int sr = 0;
bool flag = 0;
rep(i,1,n)
{
sr += dr[i];
if(sr<0)
{
flag = 1;
break;
}
}
if(flag==0)
cout << 0;
else
{
LL l = 1, r = 1e6 + 5, ans = 0;
while (l <= r)
{
int mid = l + (r - l) / 2;
if (p(mid))
ans = mid, r = mid - 1;
else
l = mid + 1;
}
cout << -1 << endl << ans;
}
return 0;
}
J-洛谷 - P1147
思路:观察发现,所有满足条件的连续正整数段互不重叠,考虑使用尺取法。
#include <bits/stdc++.h>
#include <unordered_set>
#define endl '\n'
#define rep(i, a, n) for (int i = a; i <= n; i++)
#define per(i, n, a) for (int i = n; i >= a; i--)
#define LL long long
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0);
using namespace std;
int m;
int main()
{
IOS;
cin >> m;
int l = 1, r = 1;
int s = 0;
while (r <= m)
{
s += r;
while (s > m)
{
s -= l;
l++;
}
if (s == m && r > l)
{
cout << l << " " << r << endl;
}
r++;
}
return 0;
}
607

被折叠的 条评论
为什么被折叠?



