SparkSql实现access中的ip与ip规则库的关联(方法二)

介绍如何使用SparkSQL结合自定义UDF,处理业务中IP与特定规则库的匹配问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

根据业务不同,一般都是需要自定义udf来操作

package Test

import Test.SQLIIpLocation1.ip2Long
import org.apache.spark.broadcast.Broadcast
import org.apache.spark.sql.{DataFrame, Dataset, SparkSession}

/**
  * 使用SparkSql实现access中的ip与ip规则库的关联
优点:不需要提前拿到全量的ip地址库,可以采用这种自定义函数的方式读取关系型数据库、Nosql、第三方Api等等
  */
object SQLIpLocation2 {
  /**
    * 定义一个ip转换的成十进制
    *
    * @param ip
    * @return
    */
  def ip2Long(ip: String): Long = {
    val fragments = ip.split("[.]")
    var ipNum = 0L
    for (i <- 0 until fragments.length) {
      ipNum = fragments(i).toLong | ipNum << 8L
    }
    ipNum
  }
  /**
    * 二分查找
    * @param lines
    * @param ip
    * @return
    */
  def binarySearch(lines:Array[(Long,Long,String)],ip:Long):Int={
    //定义一个初始值
    var low =0
    //定义一个末位置
    var high =lines.length-1
    while(low<= high){
      val middle =(low +high) /2
      if((ip>=lines(middle)._1) && (ip <=lines(middle)._2))
        return middle
      if (ip< lines(middle)._1)
        high = middle -1
      else{
        low = middle +1
      }
    }
    -1
  }

  def main(args: Array[String]): Unit = {
    val spark = SparkSession.builder()
      .appName("SQLIpLocation2")
      .master("local[*]")
      .getOrCreate()

    //读取ip规则数据
    val ipRulesLines: Dataset[String] = spark.read.textFile(args(0))
    //导入隐式转换
    import spark.implicits._

    //整理ip规则数据
    val tpDs: Dataset[(Long, Long, String)] = ipRulesLines.map(line => {
      val fields: Array[String] = line.split("[|]")
      val startNum = fields(2).toLong
      val endNum = fields(3).toLong
      val province = fields(6)

      (startNum, endNum, province)
    })
    //将全部的ip规则收集到Driver端
    val ipRulesInDriver: Array[(Long, Long, String)] = tpDs.collect()
    //广播,阻塞的方法,没有广播完,不在往下执行
    val broadCastRef: Broadcast[Array[(Long, Long, String)]] = spark.sparkContext.broadcast(ipRulesInDriver)

    //读取访问日志数据
    val accessLog: Dataset[String] = spark.read.textFile(args(1))
    //整理访问日志数据
    val ipLogs: DataFrame = accessLog.map(line => {
      val fields: Array[String] = line.split("[|]")
      val ip: String = fields(1)
      ip2Long(ip)
    }).toDF("ip_num")
    //将ip日志注册成视图
    ipLogs.createOrReplaceTempView("v_ip_logs")

    //udf,定义并注册一个自定义函数
    //自定义函数是在哪里定义的?(Driver),业务逻辑在哪里执行?(Executor)
    spark.udf.register("ip_num2Province",(ipNum:Long)=>{
      //获取广播到Executor端的全部ip规则
      val rulesInExecutor: Array[(Long, Long, String)] = broadCastRef.value
        val index = binarySearch(rulesInExecutor,ipNum)
      var province="未知省份"
      if(index != -1)
        province =rulesInExecutor(index)._3
      province
    })
      val result: DataFrame = spark.sql("SELECT ip_num2Province(ip_num),province,count(1) counts from v_ip_logs group by province order by counts desc")
      result.show()
    spark.stop()
  }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值