一、前述
反向自动求导是 TensorFlow 实现的方案,首先,它执行图的前向阶段,从输入到输出,去计算节点
值,然后是反向阶段,从输出到输入去计算所有的偏导。
二、具体
1、举例

图是第二个阶段,在第一个阶段中,从 x =3和 y =4开始去计算所有的节点值
f ( x / y )=x 2 * y + y + 2
求解的想法是逐渐的从图上往下,计算 f ( x , y )的偏导,使用每一个连续的节点,直到我们到达变量节
点,严重依赖链式求导法则!
2.具体过程:
因为n7是输出节点,所以f=n7,所以
本文介绍了TensorFlow中反向自动求导的实现方案。通过两阶段执行图:前向阶段计算节点值,反向阶段计算偏导数,依赖于链式法则逐步完成求导过程。
670

被折叠的 条评论
为什么被折叠?



