霍纳法则(Horner Rule)--计算多项式的值

本文介绍了一种高效求解多项式的算法——霍纳法则,通过改变多项式的计算方式,将时间复杂度从O(nk)降低到O(n),并提供了具体的实现代码和性能对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设有n+1个实数 a0,a1,…,an ,和x的序列,要对多项式Pn(x)= anxn +an-1xn-1+…+a1x+a0 求值,直接方法是对每一项分别求值,并把每一项求的值累加起来,这种方法十分低效,时间复杂度O(nk)。
有没有更高效的算法呢?答案是肯定的。通过如下变换我们可以得到一种快得多的算法,即
Pn(x)= anxn +an-1xn-1+…+a1x+a0=((…(((anx +an-1)x+an-2)x+ an-3)…)x+a1)x+a0
这种求值的方法我们称为霍纳法则
比如
Pn(x) = 2x4 -x3 - 3x2 + x - 5
Pn(x) = x(2x3 -x2 - 3x+ 1) - 5
Pn(x) = x(x(2x2 -x - 3)+ 1) - 5
Pn(x) = x(x(x(2x -1) - 3)+ 1) - 5
这样时间复杂度就变成O(n)了。

    function horner(a,x) {
        let length = a.length;
        //获取最高阶的系数
        let temp  = a[0];
        for (let i = 1; i < length; i++) {
            temp = x * temp + a[i];
        }
        return temp
    }

    function stupid(a,x){
        let length = a.length;
        let temp = 0;
        for (let i = 0; i < length; i++) {
            temp += a[i] * Math.pow(x,length-1-i);
        }
        return temp
    }

    let a = [1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,
        4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2,1,4,2];
    let x = 3;

    let start =  Date.now();
    for (let i = 0; i <1000000; i++) {
        horner(a,x);
    }
    console.log("horner time = ",(Date.now() - start));

    start =  Date.now();
    for (let i = 0; i <1000000; i++) {
        stupid(a,x);
    }
    console.log("stupid time = ",(Date.now() - start));

两个计算结果有着巨大的差异
image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值