题目大意:有N个城市,城市1是首都
有M条路,路的状态有两种,一种是可行的,另一种是不可行的,不可行的可以修成可行,但要花1单位的费用
现在问,要让首都能到任意城市,需要花费的最小代价是多少,需要修的路是哪几条
解题思路:就是最小树形图+输出路径了
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 2000010;
const int INF = 0x3f3f3f3f;
struct Edge{
int u, v, d, dd, id;
Edge() {}
Edge(int u, int v, int d, int id): u(u), v(v), d(d), id(id), dd(d){};
};
const int M = 2000010;
struct Used{
int pre, id;
}U[M];
int UseEdge[M];
struct DirectorMT{
int n, m, tot;
Edge edges[N];
int vis[N], id[N], in[N], pre[N];
int preEdge[N];
void init(int n) {
this->n = n;
m = 0;
}
void AddEdge(int u, int v, int mark, int id) {
edges[m++] = Edge(u, v, mark, id);
}
int DirMt(int root) {
tot = m;
int ans = 0;
while (1) {
for (int i = 0; i < n; i++) in[i] = INF;
for (int i = 0; i < m; i++) {
int u = edges[i].u;
int v = edges[i].v;
if (edges[i].d < in[v] && u != v ) {
in[v] = edges[i].d;
pre[v] = u;
preEdge[v] = edges[i].id;
}
}
for (int i = 0; i < n; i++) {
if (i == root) continue;
if (in[i] == INF) return -1;
}
memset(id, -1, sizeof(id));
memset(vis, -1, sizeof(vis));
in[root] = 0;
int cnt = 0;
for (int i = 0; i < n; i++) {
ans += in[i];
int v = i;
//该边被使用了
if (i != root) UseEdge[preEdge[i]]++;
while (vis[v] != i && v != root && id[v] == -1) {
vis[v] = i;
v = pre[v];
}
if (v != root && id[v] == -1) {
for (int u = pre[v]; u != v; u = pre[u])
id[u] = cnt;
id[v] = cnt++;
}
}
if (cnt == 0) break;
for (int i = 0; i < n; i++)
if (id[i] == -1) id[i] = cnt++;
for (int i = 0; i < m; i++) {
int v = edges[i].v;
edges[i].v = id[edges[i].v];
edges[i].u = id[edges[i].u];
//因为有新的边进来了,如果用到该边的话,那么上一条边就要被取消掉了
if (edges[i].u != edges[i].v) {
edges[i].d -= in[v];
U[tot].id = edges[i].id;
U[tot].pre = preEdge[v];
edges[i].id = tot;
tot++;
}
}
n = cnt;
root = id[root];
}
for (int i = tot - 1; i >= m; i--)
if (UseEdge[i]) {
UseEdge[U[i].id]++;
UseEdge[U[i].pre]--;
}
return ans;
}
}MT;
int n, m;
void init() {
MT.init(n);
int u, v, mark;
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &u, &v, &mark);
u--; v--;
MT.AddEdge(u, v, mark, i);
}
int ans = MT.DirMt(0);
if (ans == -1 || ans == 0) {
printf("%d\n", ans);
return ;
}
printf("%d\n", ans);
for (int i = 0; i < m; i++)
if (UseEdge[i] && MT.edges[i].dd)
printf("%d\n", i + 1);
}
int main() {
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
scanf("%d%d", &n, &m);
init();
return 0;
}