Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11510 | Accepted: 8179 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 6266875
这题可以用矩阵快速幂,算是入门题。
方法一:直接计算
.
#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<string> #include<algorithm> using namespace std; typedef long long ll; #define inf 0x7fffffff #define pi acos(-1.0) #define MOD 10000 ll fast_mod(ll n) { ll i,j,k; ll ans[2][2]={1,0,0,1}; //初始化为单位矩阵,也是最终的答案 ll temp[2][2]; //做为矩阵乘法中的中间变量 ll a[2][2]={1,1,1,0}; while(n) { if(n&1){ //实现 ans*=t,其中要先把ans赋值给tmp然后用ans=tmp*t for(i=0;i<2;i++){ for(j=0;j<2;j++){ temp[i][j]=ans[i][j]; } } ans[0][0]=ans[0][1]=ans[1][0]=ans[1][1]=0; for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ ans[i][j]=(ans[i][j]+(temp[i][k]*a[k][j]+MOD)%MOD+MOD )%MOD; } } } } for(i=0;i<2;i++){ for(j=0;j<2;j++){ temp[i][j]=a[i][j]; } } a[0][0]=a[0][1]=a[1][0]=a[1][1]=0; for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ a[i][j]=(a[i][j]+(temp[i][k]*temp[k][j]+MOD)%MOD+MOD )%MOD; //这里先加MOD然后再取模是为了模完后不为负数 } } } n>>=1; } return (ans[0][1]+MOD)%MOD; } int main() { ll n,m,i,j; while(scanf("%lld",&n)!=EOF && n!=-1){ printf("%lld\n",fast_mod(n)); } return 0; } 方法二:考虑1×2的矩阵【f[n-2],f[n-1]】。我们可以通过乘以一个2×2的矩阵A,得到矩阵:【f[n-1],f[n]】。 即:【f[n-2],f[n-1]】*A = 【f[n-1],f[n]】=【f[n-1],f[n-1]+f[n-2]】 可以构造出这个2×2矩阵A,即: 0 1 1 1 所以,有【f[1],f[2]】×A=【f[2],f[3]】 又因为矩阵乘法满足结合律,故有: 【f[1],f[2]】×A ^(n-1) =【f[n],f[n+1]】 <pre name="code" class="cpp">#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<string> #include<algorithm> using namespace std; typedef long long ll; #define inf 0x7fffffff #define pi acos(-1.0) #define MOD 10000 ll ans[2][2]; void fast_mod(ll n) { ll i,j,k; ll temp[2][2]; //做为矩阵乘法中的中间变量 ll a[2][2]={0,1,1,1}; while(n) { if(n&1){ //实现 ans*=t,其中要先把ans赋值给tmp然后用ans=tmp*t for(i=0;i<2;i++){ for(j=0;j<2;j++){ temp[i][j]=ans[i][j]; } } ans[0][0]=ans[0][1]=ans[1][0]=ans[1][1]=0; for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ ans[i][j]=(ans[i][j]+(temp[i][k]*a[k][j]+MOD)%MOD+MOD )%MOD; } } } } for(i=0;i<2;i++){ for(j=0;j<2;j++){ temp[i][j]=a[i][j]; } } a[0][0]=a[0][1]=a[1][0]=a[1][1]=0; for(i=0;i<2;i++){ for(j=0;j<2;j++){ for(k=0;k<2;k++){ a[i][j]=(a[i][j]+(temp[i][k]*temp[k][j]+MOD)%MOD+MOD )%MOD; //这里先加MOD然后再取模是为了模完后不为负数 } } } n>>=1; } } int main() { ll n,m,i,j; while(scanf("%lld",&n)!=EOF && n!=-1){ if(n==0){ printf("0\n");continue; } if(n==1){ printf("1\n");continue; } if(n==2){ printf("1\n");continue; } ans[0][0]=1; ans[0][1]=0; ans[1][0]=0; ans[1][1]=1; fast_mod(n-1); printf("%lld\n",ans[1][1]%MOD ); } return 0; }
快速幂模板:#include<iostream> #include<stdio.h> #include<stdlib.h> #include<string.h> #include<math.h> #include<vector> #include<map> #include<set> #include<queue> #include<stack> #include<string> #include<algorithm> using namespace std; typedef long long ll; #define inf 0x7fffffff #define pi acos(-1.0) #define MOD 10000 struct matrix{ ll n,m,i; ll data[99][99]; void init_danwei(){ for(i=0;i<n;i++){ data[i][i]=1; } } }a,b,c,d,t; matrix multi(matrix &a,matrix &b){ ll i,j,k; matrix temp; temp.n=a.n; temp.m=b.m; for(i=0;i<temp.n;i++){ for(j=0;j<temp.m;j++){ temp.data[i][j]=0; } } for(i=0;i<a.n;i++){ for(k=0;k<a.m;k++){ if(a.data[i][k]>0){ for(j=0;j<b.m;j++){ temp.data[i][j]=(temp.data[i][j]+(a.data[i][k]*b.data[k][j])%MOD )%MOD; } } } } return temp; } matrix fast_mod(matrix a,ll n){ matrix ans; ans.n=a.n; ans.m=a.m; memset(ans.data,0,sizeof(ans.data)); ans.init_danwei(); while(n>0){ if(n&1)ans=multi(ans,a); a=multi(a,a); n>>=1; } return ans; } int main() { ll n,m,i,j; while(scanf("%lld",&n)!=EOF && n!=-1) { a.data[0][0]=a.data[0][1]=a.data[1][0]=1; a.data[1][1]=0; a.n=a.m=2; matrix ant=fast_mod(a,n); printf("%lld\n",ant.data[0][1]%MOD); } return 0; }