POJ3070Fibonacci

本文介绍了一种高效计算斐波那契数列中任一项最后四位数字的方法,利用矩阵快速幂运算实现,适用于大整数计算场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

易水人去,明月如霜。

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

#include <cstdio>
#include <iostream>

using namespace std;

const int MOD = 10000;

int fast_mod(int n)
{
    int t[2][2] = {1, 1, 1, 0};
    int ans[2][2] = {1, 0, 0, 1};
    int tmp[2][2];

    while(n)
    {
        if(n & 1)
        {
            for(int i = 0; i < 2; ++i)
                for(int j = 0; j < 2; ++j)
                    tmp[i][j] = ans[i][j];
            ans[0][0] = ans[1][1] = ans[0][1] = ans[1][0] = 0;

            for(int i = 0; i < 2; ++i)
            {
                for(int j = 0; j < 2; ++j)
                {
                    for(int k = 0; k < 2; ++k)
                        ans[i][j] = (ans[i][j] + tmp[i][k] * t[k][j]) % MOD;
                }
            }
        }


        for(int i = 0; i < 2; ++i)
            for(int j = 0; j < 2; ++j)
                tmp[i][j] = t[i][j];
        t[0][0] = t[1][1] = 0;
        t[0][1] = t[1][0] = 0;
        for(int i = 0; i < 2; ++i)
        {
            for(int j = 0; j < 2; ++j)
            {
                for(int k = 0; k < 2; ++k)
                    t[i][j] = (t[i][j] + tmp[i][k] * tmp[k][j]) % MOD;
            }
        }

        n >>= 1;
    }
    return ans[0][1];
}

int main()
{
    int n;
    while(scanf("%d", &n) && n != -1)
    {
        printf("%d\n", fast_mod(n));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值