💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
🔊博主简介:985研究生,Matlab领域科研开发者;
🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(进阶版)
⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!
⛄一、免疫算法认知无线电资源分配简介
1 免疫算法
1.1 人工免疫算法的发展历史
在生命科学领域,人们对遗传和免疫等自然现象进行了广泛而深入的研究.20世纪60年代,Bagley和Rosenberg等先驱使用了相关的内容和知识,特别是遗传学的理论和概念,在对这些研究成果进行分析和理解的基础上,将其成功应用于某些工程科学领域,取得了良好的效果。八十年代中期,美国密歇根大学的Hollan教授不仅对其进行了总结和扩展。先前学者提出的遗传概念,也给出了简洁明了的算法描述,从而形成了目前的一般遗传算法。(遗传算法,遗传算法)。因为传统遗传算法具有使用方便,鲁棒性强的特点。便于并行处理,广泛应用于组合优化,结构设计,人工智能等领域另一方面,Farmer和Bersini也在不同的时间和不同程度上参与了免疫的概念。遗传算法是一种具有迭代生成和测试过程的搜索算法。
研究人员正试图将生命科学中的免疫概念引入工程实践领域,并利用相关知识和理论将它们与现有的一些智能算法有机地结合起来,建立新的进化理论和算法来改进算法。整体性能。基于这一思想,将免疫概念及其理论应用于遗传算法。在保留原算法优良特性的前提下,试图有选择地,有目的地利用待解决问题中的一些特征信息或知识来抑制优化过程。降解现象,该算法称为免疫算法(IA))。
1.2 免疫算法相关概念
1、抗原:在生命科学中,一种刺激和诱导机体免疫系统产生免疫反应并在体内或体外与相应的免疫反应产物发生特异反应的物质。在我们的算法中,它指的是所有可能错误的基因,也就是说,非最佳个体的基因。
2、抗体:在生命科学中,免疫系统受到抗原的刺激,免疫细胞转化为浆细胞,产生与抗原特异性结合的免疫球蛋白。免疫球蛋白是抗体。在这种情况下,它指的是通过根据疫苗修改个体基因而获得的新个体。其中,根据疫苗修饰个体基因的过程是接种疫苗,目的是在产生新个体时消除抗原的不利影响。
3、免疫疫苗:基于进化或未决问题估计最佳个体基因。
4、免疫算子:与生命科学中的免疫学理论类似,免疫操作者也分为两种类型:总免疫和靶免疫,分别对应于生命科学中的非特异性免疫和特异性免疫。其中,总免疫指的是类型免疫接种,其中每个个体中的每个个体在每次突变操作后进行免疫操作;目标免疫是指个体在变异操作后的判断,个体仅在行动点。发生一种免疫反应。前者主要应用于个体进化的初始阶段,但基本上不起作用在进化过程中,否则它很可能产生通常意义上的“同化现象”;后者通常伴随着人口进化的整个过程。它也是免疫操纵的常见操作者。
5、免疫调节:在免疫反应过程中,大量抗体的产生减少了抗原对免疫细胞的刺激,从而抑制了抗体的分化和增殖,同时,还存在相互刺激和抑制的关系。产生的抗体,如抗原和抗体,抗体和抗体之间的相互限制将抗体的免疫应答维持在一定水平,确保身体的免疫平衡。
6、免疫记忆:免疫系统与抗原反应的抗体作为记忆细胞存储。当相同的抗原再次侵入时,相应的记忆细胞被激活以产生大量抗体,缩短免疫应答时间。
7、抗原识别:通过将抗原表面上的表位与抗体分子表面上的化学基团匹配来完成识别。这种匹配过程也是一个连续学习抗原的过程,最后选择最合适的抗体与抗原结合。排除抗原。
1.3 免疫算法流程
1、随机产生初始父代种群A1,根据先验知识抽取疫苗;
2、若当前群体中包含最佳个体,则算法停止运行并输出结果;否则,继续;
3、对当前第k代父本种群Ak进行交叉操作,得到种群Bk;
4、对Bk进行变异操作,得到种群Ck;
5、对Ck进行接种疫苗操作,得到种群Dk;
6、对Dk进行免疫选择操作,得到新一代父本Ak+1,转至第二步。
2 结合免疫算法的安全传输资源分配算法
为了解决上一节描述的资源分配问题,本节使用免疫算法解决子载波分配问题,进一步用贪心算法解决功率调整问题,完成安全发射功率结合子载波分配和功率调整以形成分配算法。
2.1 免疫算法进行子载波分配流程
免疫算法的主要操作如下:
(1)抗体的编码和产生每个抗体由M位十进制整数组成,对应N个子载波,每个整数范围从1到M,表明子载体被分配给M个认知用户中的一个。抗体群是K,对应于K个解决方案。第一代抗体通常是随机产生的。
(2)计算和排序亲和力 根据贪婪算法的基本思想,完成每种抗体的安全传输速率调整。安全传输速率调整完成后,获得每个抗体对应的加权安全吞吐量,然后排序
(3)存储单元的生成在(2)中排序后对应于较高加权吞吐量的抗体被保存为存储单元以避免后续操作中的丢失。
(4)蚂蚁的选择ibodies
浓度概率,亲和概率和选择概率有三个概率。
2.2 该算法的完整流程
结合上述子载波的分配机制以及速率调整的方法,对应的资源分配算法的步骤如下:
步骤1:初始化,随机产生抗体,记忆细胞。
步骤2:将记忆细胞加入抗体之中。
步骤3:针对各个抗体进行子载波的排序。
步骤4:判断是否存在可以调整速率的子载波。如果存在,则调整速率等量,并步骤3;如果不存在,则计算安全传输速率,并执行步骤5。
步骤5:确定各个抗体所对应的亲和度,将性能较佳的抗体加入记忆细胞。
步骤6:计算出各个抗体的选择概率,并完成抗体的选择。
步骤7:针对选中的抗体进行交叉以及突变操作,生成新一代的抗体。
步骤8:判断是否满足算法结束条件,通常的算法结束条件为达到了指定的迭代次数。如果满足条件,则算法结束;否则,返回步骤2。
⛄二、部分源代码
%=========所需常量========
N=20;%子载波个数
M=3;%小区个数
K=50;%抗体规模
T=46;%抗体突变规模
L=1;%记忆细胞规模
O=5;%每代公平性调整次数
Pc=0.85;%交叉概率
Pm=0.1;%变异概率
Alpha=0.3;%优化目标调节因子wq
Gama=0.06;%相似度常数
Rho=0.6;%选择概率调节因子
Tau=20;%信号噪声比差距
Eta=2;%路径损耗指数
Sigma=3.16;%高斯标准差
Objective=0;%优化目标
genMax=200;%最大迭代次数
Ts=4e-6;%码元持续时间
N0=1e-6;%噪声功率谱密度
W=0.625e6;%主用户带宽
Delta_f=0.3125e6;%子载波带宽
Pth=5;%认知基站最大允许发射功率
Ith=0.1;%主用户的可容忍的最大功率干扰
Rate_m=[2 1 1];%各个小区的功率比值
%设基站半径为3km,归一化距离也为3km
%======所需变量=========
%flag=0;%循环进行的标志
%temp=0;%临时存储某些值
n=1;%第n个子载波
m=1;%第m个小区
k=1;%第k个抗体
i=1;%循环变量
j=1;%循环变量
o=1;%循环变量
antibody=zeros(M,N,K);%载波分配方案(第k页是第k个抗体,第m行是第m个小区,第n列是第n个子载波的取值是功率)
memorycell=zeros(M,N,L);%记忆细胞分配方案(第k页是第k个抗体,第m行是第m个小区,第n列是第n个子载波)
temp_antibody=zeros(M,N,K);%初始选择保留抗体
temp_memorycell=zeros(M,N,L);%初始记忆细胞
%rate=zeros(M,N,K);%速度方案(第k页是第k个抗体,第m行是第m个小区,第n列是第n个子载波)
%ratio=zeros(K);%第k个抗体的速率功率比
itfere_pu=zeros(M,N,K);%各个子载波对主用户的干扰
%antibody_flag=zeros(1,K);%每个抗体的标志
⛄三、运行结果
⛄四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1]李维英,陈东,邢成文,王宁.认知无线电系统中OFDM多用户资源分配算法[J].西安电子科技大学学报. 2007,(03)
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
1.1 PID优化
1.2 VMD优化
1.3 配电网重构
1.4 三维装箱
1.5 微电网优化
1.6 优化布局
1.7 优化参数
1.8 优化成本
1.9 优化充电
1.10 优化调度
1.11 优化电价
1.12 优化发车
1.13 优化分配
1.14 优化覆盖
1.15 优化控制
1.16 优化库存
1.17 优化路由
1.18 优化设计
1.19 优化位置
1.20 优化吸波
1.21 优化选址
1.22 优化运行
1.23 优化指派
1.24 优化组合
1.25 车间调度
1.26 生产调度
1.27 经济调度
1.28 装配线调度
1.29 水库调度
1.30 货位优化
1.31 公交排班优化
1.32 集装箱船配载优化
1.33 水泵组合优化
1.34 医疗资源分配优化
1.35 可视域基站和无人机选址优化
2 机器学习和深度学习分类与预测
2.1 机器学习和深度学习分类
2.1.1 BiLSTM双向长短时记忆神经网络分类
2.1.2 BP神经网络分类
2.1.3 CNN卷积神经网络分类
2.1.4 DBN深度置信网络分类
2.1.5 DELM深度学习极限学习机分类
2.1.6 ELMAN递归神经网络分类
2.1.7 ELM极限学习机分类
2.1.8 GRNN广义回归神经网络分类
2.1.9 GRU门控循环单元分类
2.1.10 KELM混合核极限学习机分类
2.1.11 KNN分类
2.1.12 LSSVM最小二乘法支持向量机分类
2.1.13 LSTM长短时记忆网络分类
2.1.14 MLP全连接神经网络分类
2.1.15 PNN概率神经网络分类
2.1.16 RELM鲁棒极限学习机分类
2.1.17 RF随机森林分类
2.1.18 SCN随机配置网络模型分类
2.1.19 SVM支持向量机分类
2.1.20 XGBOOST分类
2.2 机器学习和深度学习预测
2.2.1 ANFIS自适应模糊神经网络预测
2.2.2 ANN人工神经网络预测
2.2.3 ARMA自回归滑动平均模型预测
2.2.4 BF粒子滤波预测
2.2.5 BiLSTM双向长短时记忆神经网络预测
2.2.6 BLS宽度学习神经网络预测
2.2.7 BP神经网络预测
2.2.8 CNN卷积神经网络预测
2.2.9 DBN深度置信网络预测
2.2.10 DELM深度学习极限学习机预测
2.2.11 DKELM回归预测
2.2.12 ELMAN递归神经网络预测
2.2.13 ELM极限学习机预测
2.2.14 ESN回声状态网络预测
2.2.15 FNN前馈神经网络预测
2.2.16 GMDN预测
2.2.17 GMM高斯混合模型预测
2.2.18 GRNN广义回归神经网络预测
2.2.19 GRU门控循环单元预测
2.2.20 KELM混合核极限学习机预测
2.2.21 LMS最小均方算法预测
2.2.22 LSSVM最小二乘法支持向量机预测
2.2.23 LSTM长短时记忆网络预测
2.2.24 RBF径向基函数神经网络预测
2.2.25 RELM鲁棒极限学习机预测
2.2.26 RF随机森林预测
2.2.27 RNN循环神经网络预测
2.2.28 RVM相关向量机预测
2.2.29 SVM支持向量机预测
2.2.30 TCN时间卷积神经网络预测
2.2.31 XGBoost回归预测
2.2.32 模糊预测
2.2.33 奇异谱分析方法SSA时间序列预测
2.3 机器学习和深度学习实际应用预测
CPI指数预测、PM2.5浓度预测、SOC预测、财务预警预测、产量预测、车位预测、虫情预测、带钢厚度预测、电池健康状态预测、电力负荷预测、房价预测、腐蚀率预测、故障诊断预测、光伏功率预测、轨迹预测、航空发动机寿命预测、汇率预测、混凝土强度预测、加热炉炉温预测、价格预测、交通流预测、居民消费指数预测、空气质量预测、粮食温度预测、气温预测、清水值预测、失业率预测、用电量预测、运输量预测、制造业采购经理指数预测
3 图像处理方面
3.1 图像边缘检测
3.2 图像处理
3.3 图像分割
3.4 图像分类
3.5 图像跟踪
3.6 图像加密解密
3.7 图像检索
3.8 图像配准
3.9 图像拼接
3.10 图像评价
3.11 图像去噪
3.12 图像融合
3.13 图像识别
3.13.1 表盘识别
3.13.2 车道线识别
3.13.3 车辆计数
3.13.4 车辆识别
3.13.5 车牌识别
3.13.6 车位识别
3.13.7 尺寸检测
3.13.8 答题卡识别
3.13.9 电器识别
3.13.10 跌倒检测
3.13.11 动物识别
3.13.12 二维码识别
3.13.13 发票识别
3.13.14 服装识别
3.13.15 汉字识别
3.13.16 红绿灯识别
3.13.17 虹膜识别
3.13.18 火灾检测
3.13.19 疾病分类
3.13.20 交通标志识别
3.13.21 卡号识别
3.13.22 口罩识别
3.13.23 裂缝识别
3.13.24 目标跟踪
3.13.25 疲劳检测
3.13.26 旗帜识别
3.13.27 青草识别
3.13.28 人脸识别
3.13.29 人民币识别
3.13.30 身份证识别
3.13.31 手势识别
3.13.32 数字字母识别
3.13.33 手掌识别
3.13.34 树叶识别
3.13.35 水果识别
3.13.36 条形码识别
3.13.37 温度检测
3.13.38 瑕疵检测
3.13.39 芯片检测
3.13.40 行为识别
3.13.41 验证码识别
3.13.42 药材识别
3.13.43 硬币识别
3.13.44 邮政编码识别
3.13.45 纸牌识别
3.13.46 指纹识别
3.14 图像修复
3.15 图像压缩
3.16 图像隐写
3.17 图像增强
3.18 图像重建
4 路径规划方面
4.1 旅行商问题(TSP)
4.1.1 单旅行商问题(TSP)
4.1.2 多旅行商问题(MTSP)
4.2 车辆路径问题(VRP)
4.2.1 车辆路径问题(VRP)
4.2.2 带容量的车辆路径问题(CVRP)
4.2.3 带容量+时间窗+距离车辆路径问题(DCTWVRP)
4.2.4 带容量+距离车辆路径问题(DCVRP)
4.2.5 带距离的车辆路径问题(DVRP)
4.2.6 带充电站+时间窗车辆路径问题(ETWVRP)
4.2.3 带多种容量的车辆路径问题(MCVRP)
4.2.4 带距离的多车辆路径问题(MDVRP)
4.2.5 同时取送货的车辆路径问题(SDVRP)
4.2.6 带时间窗+容量的车辆路径问题(TWCVRP)
4.2.6 带时间窗的车辆路径问题(TWVRP)
4.3 多式联运运输问题
4.4 机器人路径规划
4.4.1 避障路径规划
4.4.2 迷宫路径规划
4.4.3 栅格地图路径规划
4.5 配送路径规划
4.5.1 冷链配送路径规划
4.5.2 外卖配送路径规划
4.5.3 口罩配送路径规划
4.5.4 药品配送路径规划
4.5.5 含充电站配送路径规划
4.5.6 连锁超市配送路径规划
4.5.7 车辆协同无人机配送路径规划
4.6 无人机路径规划
4.6.1 飞行器仿真
4.6.2 无人机飞行作业
4.6.3 无人机轨迹跟踪
4.6.4 无人机集群仿真
4.6.5 无人机三维路径规划
4.6.6 无人机编队
4.6.7 无人机协同任务
4.6.8 无人机任务分配
5 语音处理
5.1 语音情感识别
5.2 声源定位
5.3 特征提取
5.4 语音编码
5.5 语音处理
5.6 语音分离
5.7 语音分析
5.8 语音合成
5.9 语音加密
5.10 语音去噪
5.11 语音识别
5.12 语音压缩
5.13 语音隐藏
6 元胞自动机方面
6.1 元胞自动机病毒仿真
6.2 元胞自动机城市规划
6.3 元胞自动机交通流
6.4 元胞自动机气体
6.5 元胞自动机人员疏散
6.6 元胞自动机森林火灾
6.7 元胞自动机生命游戏
7 信号处理方面
7.1 故障信号诊断分析
7.1.1 齿轮损伤识别
7.1.2 异步电机转子断条故障诊断
7.1.3 滚动体内外圈故障诊断分析
7.1.4 电机故障诊断分析
7.1.5 轴承故障诊断分析
7.1.6 齿轮箱故障诊断分析
7.1.7 三相逆变器故障诊断分析
7.1.8 柴油机故障诊断
7.2 雷达通信
7.2.1 FMCW仿真
7.2.2 GPS抗干扰
7.2.3 雷达LFM
7.2.4 雷达MIMO
7.2.5 雷达测角
7.2.6 雷达成像
7.2.7 雷达定位
7.2.8 雷达回波
7.2.9 雷达检测
7.2.10 雷达数字信号处理
7.2.11 雷达通信
7.2.12 雷达相控阵
7.2.13 雷达信号分析
7.2.14 雷达预警
7.2.15 雷达脉冲压缩
7.2.16 天线方向图
7.2.17 雷达杂波仿真
7.3 生物电信号
7.3.1 肌电信号EMG
7.3.2 脑电信号EEG
7.3.3 心电信号ECG
7.3.4 心脏仿真
7.4 通信系统
7.4.1 DOA估计
7.4.2 LEACH协议
7.4.3 编码译码
7.4.4 变分模态分解
7.4.5 超宽带仿真
7.4.6 多径衰落仿真
7.4.7 蜂窝网络
7.4.8 管道泄漏
7.4.9 经验模态分解
7.4.10 滤波器设计
7.4.11 模拟信号传输
7.4.12 模拟信号调制
7.4.13 数字基带信号
7.4.14 数字信道
7.4.15 数字信号处理
7.4.16 数字信号传输
7.4.17 数字信号去噪
7.4.18 水声通信
7.4.19 通信仿真
7.4.20 无线传输
7.4.21 误码率仿真
7.4.22 现代通信
7.4.23 信道估计
7.4.24 信号检测
7.4.25 信号融合
7.4.26 信号识别
7.4.27 压缩感知
7.4.28 噪声仿真
7.4.29 噪声干扰
7.5 无人机通信
7.6 无线传感器定位及布局方面
7.6.1 WSN定位
7.6.2 高度预估
7.6.3 滤波跟踪
7.6.4 目标定位
7.6.4.1 Dv-Hop定位
7.6.4.2 RSSI定位
7.6.4.3 智能算法优化定位
7.6.5 组合导航
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置