【语音去噪】软阈值+硬阈值+折中阈值语音去噪【含Matlab源码 530期】

本文介绍了Matlab中使用小波降噪方法去除宽带噪声的过程,包括原理、步骤和具体代码示例。通过小波分解、设置阈值并处理小波系数,实现了信号的噪声抑制,同时讨论了软阈值和硬阈值的选择策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式

更多Matlab语音处理仿真内容点击👇
Matlab语音处理(进阶版)

⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!

⛄一、小波语音降噪简介

对于噪声频谱遍布于语音信号频谱之中的宽带噪声,如果噪声振幅比大部分的语音信号振幅低,则削去低幅度成分也就削去了宽带噪声。基于这种思路,可以在频域中采取中心限幅的方法,即让带噪语音信号通过一限幅滤波器,高幅度频谱可以通过而低幅成分不允许通过,从而实现噪声抑制。需要注意的是中心削波不可避免地要损害语音质量,通常只在频域中进行,而一般不在时域中实施。
小波降噪的原理类似于中心削波法。小波降噪最初是由Donoho和Johnstone提出的, 其主要理论依据是,小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。因此,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至0。小波降噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保
留, 或者做相应的“收缩”(shrinkage) 处理。最后; 将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号。
阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数的不同处理策略,是阈值去噪中关键的一步。设w表示小波系数, T为给定阈值, sgn(*) 为符号函数, 常见的阈值函数主要有:
在这里插入图片描述

⛄二、部分源代码

clc;
clear;
fs=wavread(‘C:\Users\lenovo\Desktop\93317443speech-denoising\Ring01.wav’);
y=fs(40000:120000);
N=length(y);
figure(1);
subplot(111);
plot(y);
ylabel(‘幅值 A’);
title(‘原始信号’);
s=awgn(y,20,‘measured’);%加入高斯白噪声
figure(2);
plot(s);
ylabel(‘幅值 A’);
title(‘加噪信号’);
wname=‘db3’;%选db3小波基
lev=5;%5层分解
[c,l]=wavedec(s,lev,wname);
a5=appcoef(c,l,wname,lev);
d5=detcoef(c,l,5);
d4=detcoef(c,l,4);
d3=detcoef(c,l,3);
d2=detcoef(c,l,2);
d1=detcoef(c,l,1);
cD=[d1,d2,d3,d4,d5];
a=8500;b=13;
sigma=median(abs(cD))/3.647
thr1=(sigmasqrt(2(log10(N))))/(log10(2));
cD1=wthresh(d1,‘s’,thr1);
thr2=(sigmasqrt(2(log10(N))))/(log10(3));
cD2=wthresh(d2,‘s’,thr2);
thr3=(sigmasqrt(2(log10(N))))/(log10(4));
cD3=wthresh(d3,‘s’,thr3);
thr4=(sigmasqrt(2(log10(N))))/(log10(5));
cD4=wthresh(d4,‘s’,thr4);
thr5=(sigmasqrt(2(log10(N))))/(log10(6));
cD5=wthresh(d5,‘s’,thr5);
cd=[a5,cD5,cD4,cD3,cD2,cD1];
c=cd;
ys=waverec(c,l,wname);
figure(3);
plot(ys);
title(‘软阈值处理’);
thr1=(sigmasqrt(2(log10(N))))/(log10(2));
cD1=wthresh(d1,‘h’,thr1);
thr2=(sigmasqrt(2(log10(N))))/(log10(3));
cD2=wthresh(d2,‘h’,thr2);
thr3=(sigmasqrt(2(log10(N))))/(log10(4));
cD3=wthresh(d3,‘h’,thr3);
thr4=(sigmasqrt(2(log10(N))))/(log10(5));
cD4=wthresh(d4,‘h’,thr4);
thr5=(sigmasqrt(2(log10(N))))/(log10(6));
cD5=wthresh(d5,‘h’,thr5);
cd=[a5,cD5,cD4,cD3,cD2,cD1];
c=cd;
yh=waverec(c,l,wname);
figure(4);
plot(yh);
title(‘硬阈值处理’);
thr1=(sigmasqrt(2(log10(length(d1)))))/(log10(1+1));
for i=1:length(d1)
if(abs(d1(i))>=thr1)
cD1(i)=sign(d1(i))(abs(d1(i))-bthr1/(a^(abs(abs(d1(i))-thr1))+b-1));%估计第一层小波系数
else
cD1(i)=0;
end
end
thr2=(sigmasqrt(2(log10(length(d2)))))/(log10(2+1));
for i=1:length(d2)
if(abs(d2(i))>=thr2)
cD2(i)=sign(d2(i))(abs(d2(i))-bthr2/(a^(abs(abs(d2(i))-thr2))+b-1));%估计第二层小波系数
else
cD2(i)=0;
end
end
thr3=(sigmasqrt(2(log10(length(d3)))))/(log10(3+1));
for i=1:length(d3)
if(abs(d3(i))>=thr3)
cD3(i)=sign(d3(i))(abs(d3(i))-bthr3/(a^(abs(abs(d3(i))-thr3))+b-1));%估计第三层小波系数
else
cD3(i)=0;
end
end
thr4=(sigmasqrt(2(log10(length(d4)))))/(log10(4+1));
for i=1:length(d4)
if(abs(d4(i))>=thr4)
cD4(i)=sign(d4(i))(abs(d4(i))-bthr4/(a^(abs(abs(d4(i))-thr4))+b-1));%估计第四层小波系数
else
cD4(i)=0;
end
end
thr5=(sigmasqrt(2(log10(length(d5)))))/(log10(5+1));
for i=1:length(d5)
if(abs(d5(i))>=thr5)
cD5(i)=sign(d5(i))(abs(d5(i))-bthr5/(a^(abs(abs(d5(i))-thr5))+b-1));%估计第五层小波系数
else
cD5(i)=0;
end
end
%%%%开始重构
cd=[a5,cD5,cD4,cD3,cD2,cD1];
c=cd;
yhs=waverec(cd,l,wname);
figure(5);
plot(ys,‘LineWidth’,1);
ylabel(‘幅值 A’)

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值