【语音去噪】巴特沃斯数字低通IIR滤波器语音信号去噪【含Matlab源码 3401期】

本文介绍了Matlab在语音信号处理中的应用,包括小波消噪技术、信号分析和特征提取。作者使用Matlab实现了一个处理语音信号的程序,展示了从信号采集到简单处理的过程,以及部分源代码示例。

💥💥💥💥💥💥💥💥💞💞💞💞💞💞💞💞💞Matlab武动乾坤博客之家💞💞💞💞💞💞💞💞💞💥💥💥💥💥💥💥💥
🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚤🚀🚀🚀🚀🚀🚀🚀🚀🚀🚀
在这里插入图片描述
🔊博主简介:985研究生,Matlab领域科研开发者;

🚅座右铭:行百里者,半于九十。

🏆代码获取方式:
优快云 Matlab武动乾坤—代码获取方式

更多Matlab语音处理仿真内容点击👇
Matlab语音处理(进阶版)

⛳️关注优快云 Matlab武动乾坤,更多资源等你来!!

⛄一、语音处理简介

语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。随着社会文化的进步和科学技术的发展,人类开始进入了信息化时代,用现代手段研究语音处理技术,使人们能更加有效地产生、传输、存储、和获取语音信息,这对于促进社会的发展具有十分重要的意义,因此,语音信号处理正越来越受到人们的关注和广泛的研究。

1 课题背景及意义
语音信号处理是一门比较实用的电子工程的专业课程,语音是人类获取信息的重要来源和利用信息的重要手段。通过语言相互传递信息是人类最重要的基本功能之一。语言是人类特有的功能,它是创造和记载几千年人类文明史的根本手段,没有语言就没有今天的人类文明。语音是语言的声学表现,是相互传递信息的最重要的手段,是人类最重要、最有效、最常用和最方便的交换信息的形式。
语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,它是一门新兴的学科,同时又是综合性的多学科领域和涉及面很广的交叉学科。

2 国内外研究现状
20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,同时,它的许多成果也体现在有关语音信号处理的各项技术之中。

3 本课题的研究内容和方法
3.1 研究内容

本论文主要介绍的是的语音信号的简单处理。本论文针对以上问题,运用数字信号学基本原理实现语音信号的处理,在matlab环境下综合运用信号提取,幅频变换以及傅里叶变换、滤波等技术来进行语音信号处理。我所做的工作就是在matlab软件上编写一个处理语音信号的程序,能对语音信号进行采集,并对其进行各种处理,达到简单的语音信号处理的目的。

⛄二、部分源代码

%小波消噪
%cd e\gz;
fs=wavread(‘zaibiekangqiao.wav’);%读入声音并赋予变量
s=fs(15000:15090);%取采样信号的15000–1509。个采样点
ls=length(s);%计算采样序列的长度
figure(1);
subplot(3,3,1); plot(s);%画出原始信号
title(‘原始信号’);
%xs=s0.005whitnois(l,ls);%在语音信号中加入白噪声
%subplot(332);plot(xs);%画出含噪声的原始信号
[c,l]=wavedec(xs,3,‘db1’);%采用dbl小波对信号进行三层分解
ca3=appcoef(c,l,‘db1’,3); %提取小波分解的低频系数
cd3=detcoef(c,1,3);%提取第三层的高频系
cd2=detcoef(c,1,2);%提取第二层的高频系数
cdl=detcoef(c,l,l); %提取第一层的高频系数
subplot(333);plot(ca3);%画低频系数
title(‘低频系数’);
subplot(334);plot(cd3);%画第三层的高频系数
title(‘第三层高频系数’);
subplot(335);plot(cd2);%画第二层的高频系数
title(‘第二层高频系数’);
subplot{336};plot(cdl);%画第一层的高频系数
title(‘第一层高频系数’);
%下面利用默认阀值进行消噪处理
[thr, sorh,keepapp]=ddencmp(‘den’,‘vw’,xs);
s1=wdencmp(‘gb1’, c,1,‘db1’,3,thr,sorh,keepapp);
figure(2);
plot(sl);
title(‘小波消噪后的信号’);grid;

%用小波包进行特征提取
%cd eagz;;
%fs=wavread(`r}h.wav’);%读入声音并赋予变量
%s=fs(15000:15090);%取采样信号的15000—15090个采样点
%figure{ 1);
%subplot(331); plat{s);%画出原始信号
%title{‘原始信号’);
%用dbl小波包进行三层分解
%[t,d]}vpdec(s, 3,'db 1 ',‘shanno}’ );
%plottree(t);%}1小波包树结构的图形
%下面对信号第三层各系数进行重构
%0/as130是信号51的[[3 } 0]结点的重构系数,依此类推
%s 13 (}vvprcae}(t,d,j3,0]};
%s131=wprcoef(t,d, [3,1 ]};
%si32=wprroef}t,d,j3,2]};
%s133wprcoef(#,d,[3,3]?:
%s134=wprcoc低氏[3}}1?}

%s 135}uprcoef(t,d,[3,5]);
%s 136–0wprcoe双t,d,[3,6]);
%s 137=wprcoef(t.d, [3,7]);
%画出重构系数图
%subplot(9,2,3);plot(s130);
%YJabel(s130'); %Subplot(9,2,5);lalot(s 131); %YlabeJ(s 131’);
%Subplot(9,2,7);plot(s132);
%Ylabel(s132'}; %Subplot(9,2,9);plot(s 133); %YJabeJ(sl 33’};
%Subplot(9,2,11);plot(s134);
%Ylabel(s134'}; %Subplot(9,2,13};plot(s 135); %Ylabel(s135’);
%Subplot{9,2,15 );plot(s 136);
%Ylabel(‘s136’);

⛄三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

⛄四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.
[3]宋云飞,姜占才,魏中华.基于MATLAB GUI的语音处理界面设计[J].科技信息. 2013,(02)

3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除

🍅 仿真咨询
1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置

9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长

10 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值