Jina AI创始人肖涵博士解读多模态AI的范式变革

8ed882f55106ec9f241b879da5eb585b.png

我们正处于人工智能新时代的风口浪尖,正从单模态大步迈向多模态 AI 时代。在 Jina AI,我们的 MLOps 平台帮助企业和开发者加速整个应用开发的过程,在这一范式变革中抢占先机,构建起着眼于未来的应用程序。

本文由 Jina AI 创始人肖涵为大家带来多模态 AI 技术的行业洞察分享。

 本文作者:肖涵博士,Jina AI 创始人兼 CEO

如果别人问到我们 Jina AI 是做什么的,我会有以下两种回答。1. 面对 AI 研究员时,我会说:Jina AI 是一个跨模态和多模态数据的 MLOps 平台;2. 面向从业者和合作伙伴时,我会说:Jina AI 是用于神经搜索和生成式 AI 应用的 MLOps 平台。

但无论用哪种方式来介绍 Jina AI,大多数人对于这几个词语都是比较陌生的。

跨模态、多模态

神经搜索、生成式 AI

你可能听说过”非结构化数据“,但什么是“多模态数据”呢?你可能也听说过“语义搜索”,那“神经搜索”是什么新鲜玩意儿呢?可能更加令你困惑的是,Jina AI 为什么要将这四个概念混在一起,开发一个 MLOps 框架来囊括所有这些概念呢?

这篇文章就是为了帮助大家更好地理解 Jina AI 到底是做什么的,以及我们为什么要做这些。首先,“人工智能已从单模态 AI 转向了多模态 AI”,这一点已成为行业共识,如下图所示:

c43646d9fa78a9628fc060460e84a570.jpegJina AI 愿景中的未来 AI 应用

在 Jina AI,我们的产品囊括了跨模态、多模态、神经搜索和生成式 AI,涵盖了未来 AI 应用的很大一部分。我们的 MLOps 平台帮助企业和开发者加速整个应用开发的过程,在这一范式转变中抢占先机,构建起着眼于未来的应用程序。

在接下来的文章里,我们将回顾单模态 AI 的发展历程,看看这种范式转变是如何在我们眼下悄然发生的。

单模态人工智能

在计算机科学中,“模态”大致意思是“数据类型”。所谓的单模态 AI,就是将 AI 应用于一种特定类型的数据。这在早期的机器学习领域非常普遍。直至今日,你在看机器学习相关的论文时,单模态 AI 依然占据着半壁江山。

自然语言处理

我们从自然语言处理(NLP)开始回顾。早在 2010 年,我就发表了一篇关于 Latent Dirichlet Allocation(LDA)模型的改进 Gibbs sampling(吉布斯抽样)算法的论文。

a5479a26d01c32679f7c427404f69c5c.pngEfficient Collapsed G

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值