|
Minimum Cut
Description Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs? Input Input contains multiple test cases. Each test case starts with two integers N and M (2 ≤ N ≤ 500, 0 ≤ M ≤ N × (N − 1) ⁄ 2) in one line, where N is the number of vertices. Following are M lines, each line contains M integers A, B and C (0 ≤ A, B < N, A ≠ B, C > 0), meaning that there C edges connecting vertices A and B. Output There is only one line for each test case, which contains the size of the minimum cut of the graph. If the graph is disconnected, print 0. Sample Input 3 3 0 1 1 1 2 1 2 0 1 4 3 0 1 1 1 2 1 2 3 1 8 14 0 1 1 0 2 1 0 3 1 1 2 1 1 3 1 2 3 1 4 5 1 4 6 1 4 7 1 5 6 1 5 7 1 6 7 1 4 0 1 7 3 1 Sample Output 2 1 2 Source | |||||||||
———————————————————————————————————
题目的意思是给出一张图,求整体最小割
思路:模板题
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
#define MAXN 800
int mp[MAXN][MAXN],w[MAXN],vis[MAXN],combine[MAXN];
int minC,cnt,n,m;
void Find(int &s,int &t)
{
memset(vis,0,sizeof(vis));
memset(w,0,sizeof(w));
int tmp=INF;
int q=n;
while(q--)
{
int mx=-INF;
for(int i=0; i<n; i++)
{
if(!vis[i]&&!combine[i]&&mx<w[i])
{
mx=w[i];
tmp=i;
}
}
if(t==tmp)
{
minC=w[t];
return;
}
vis[tmp]=1;
s=t,t=tmp;
for(int i=0;i<n;i++)
{
if(!vis[i]&&!combine[i])
w[i]+=mp[t][i];
}
}
minC=w[t];
}
int mincut()
{
int ans=INF;
int s,t;
memset(combine,0,sizeof(combine));
for(int i=0; i<n-1; i++)
{
s=t=-1;
Find(s,t);
combine[t]=true;
ans=min(ans,minC);
for(int i=0;i<n;i++)
{
mp[s][i]+=mp[t][i];
mp[i][s]+=mp[i][t];
}
}
return ans;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
memset(mp,0,sizeof(mp));
int u,v,w;
while(m--)
{
scanf("%d %d %d",&u,&v,&w);
mp[u][v]+=w;
mp[v][u]+=w;
}
printf("%d\n",mincut());
}
return 0;
}

本文介绍了一种解决图论中最小割问题的方法。通过输入包含多个顶点和边的无向图,算法能够找出使图分裂成两个子图所需的最少边数。文中提供了一个具体的实现案例,展示了如何通过迭代寻找最小割。
1万+

被折叠的 条评论
为什么被折叠?



