Counting Divisors
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others)Total Submission(s): 1105 Accepted Submission(s): 393
Problem Description
In mathematics, the function
d(n)
denotes the number of divisors of positive integer
n
.
For example, d(12)=6 because 1,2,3,4,6,12 are all 12 's divisors.
In this problem, given l,r and k , your task is to calculate the following thing :
For example, d(12)=6 because 1,2,3,4,6,12 are all 12 's divisors.
In this problem, given l,r and k , your task is to calculate the following thing :
(∑i=lrd(ik))mod998244353
Input
The first line of the input contains an integer
T(1≤T≤15)
, denoting the number of test cases.
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107) .
In each test case, there are 3 integers l,r,k(1≤l≤r≤1012,r−l≤106,1≤k≤107) .
Output
For each test case, print a single line containing an integer, denoting the answer.
Sample Input
3 1 5 1 1 10 2 1 100 3
Sample Output
10 48 2302
Source
Recommend
liuyiding
—————————————————————————————————
题目的意思是求一个区间的每个数的因子数之和
思路:先去打一个1到1e6的素数表,然后去枚举每个素数在区间内的倍数,可以跳着枚举,计算出每个数对应的因子个数,对于每个数的因子个数就等于枚举的因子个数*k+1累乘起来,注意剩下的大素数的判断
比赛是也是素数打表枚举的 ,鬼知道怎么想的去枚举区间的每个数去求因子,妥妥TLE,也有过正解的想法,想过没想太透彻,感觉这种题值得好好反思警戒自己
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF = 0x3f3f3f3f;
const LL mod = 998244353;
bool vis[1000009];
LL prime[1000009], sum[1000009], a[1000009];
LL l, r, k;
int cnt;
void init()
{
memset(vis, true, sizeof vis);
vis[0] = vis[1] = false;
cnt = 0;
for (int i = 2; i < 1000009; i++)
{
if (!vis[i]) continue;
prime[cnt++] = i;
for (int j = i * 2; j < 1000009; j += i) vis[j] = false;
}
}
int main()
{
init();
int t;
scanf("%d", &t);
while (t--)
{
scanf("%lld%lld%lld", &l, &r, &k);
for (int i = 0; i <= r - l; i++) sum[i] = 1, a[i] = i + l;
LL ans = 0;
for (int i = 0; i < cnt; i++)
{
LL p = (l / prime[i] + (l%prime[i] ? 1 : 0))*prime[i];
for (LL j = p; j <= r; j += prime[i])
{
int res = 0;
while (a[j - l] % prime[i] == 0) res++, a[j - l] /= prime[i];
sum[j - l] = sum[j - l] * ((1LL * res*k + 1) % mod) % mod;
}
}
for (int i = 0; i <= r - l; i++)
{
if (a[i] != 1) sum[i] = sum[i] * (k + 1) % mod;
ans = (ans + sum[i]) % mod;
}
printf("%lld\n", ans);
}
return 0;
}

961

被折叠的 条评论
为什么被折叠?



